Convolutional Neural Network Ensemble Segmentation With Ratio-Based Sampling for the Arteries and Veins in Abdominal CT Scans

人工智能 分割 计算机科学 卷积神经网络 放射科 医学
作者
Alena‐Kathrin Golla,Dominik Bauer,Ralf Schmidt,Tom Russ,Dominik Nörenberg,Khanlian Chung,Christian Tönnes,Lothar R. Schad,Frank G. Zöllner
出处
期刊:IEEE Transactions on Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:68 (5): 1518-1526 被引量:27
标识
DOI:10.1109/tbme.2020.3042640
摘要

Objective: Three-dimensional (3D) blood vessel structure information is important for diagnosis and treatment in various clinical scenarios. We present a fully automatic method for the extraction and differentiation of the arterial and venous vessel trees from abdominal contrast enhanced computed tomography (CE-CT) volumes using convolutional neural networks (CNNs). Methods: We used a novel ratio-based sampling method to train 2D and 3D versions of the U-Net, the V-Net and the DeepVesselNet. Networks were trained with a combination of the Dice and cross entropy loss. Performance was evaluated on 20 IRCAD subjects. Best performing networks were combined into an ensemble. We investigated seven different weighting schemes. Trained networks were additionally applied to 26 BTCV cases to validate the generalizability. Results: Based on our experiments, the optimal configuration is an equally weighted ensemble of 2D and 3D U- and V-Nets. Our method achieved Dice similarity coefficients of 0.758 ± 0.050 (veins) and 0.838 ± 0.074 (arteries) on the IRCAD data set. Application to the BTCV data set showed a high transfer ability. Conclusion: Abdominal vascular structures can be segmented more accurately using ensembles than individual CNNs. 2D and 3D networks have complementary strengths and weaknesses. Our ensemble of 2D and 3D U-Nets and V-Nets in combination with ratio-based sampling achieves a high agreement with manual annotations for both artery and vein segmentation. Our results surpass other state-of-the-art methods. Significance: Our segmentation pipeline can provide valuable information for the planning of living donor organ transplantations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
freeway完成签到,获得积分10
1秒前
zhaoyaoshi完成签到 ,获得积分10
2秒前
iman完成签到,获得积分10
3秒前
月夕完成签到 ,获得积分10
5秒前
云深完成签到 ,获得积分10
7秒前
7秒前
11秒前
11秒前
罗密欧与傅里叶完成签到 ,获得积分10
12秒前
聪慧芷巧发布了新的文献求助10
14秒前
miracle完成签到 ,获得积分10
15秒前
zjh完成签到,获得积分10
15秒前
lili完成签到 ,获得积分10
15秒前
叶子完成签到 ,获得积分10
15秒前
hhhee完成签到,获得积分10
15秒前
hehe23he发布了新的文献求助10
16秒前
甜蜜代双完成签到 ,获得积分10
17秒前
舒适静丹完成签到,获得积分10
19秒前
fuyuhaoy完成签到,获得积分10
20秒前
现代大神完成签到,获得积分10
20秒前
小蘑菇应助hehe23he采纳,获得10
21秒前
慧海拾穗完成签到 ,获得积分10
23秒前
ZYN完成签到,获得积分10
23秒前
Sophie完成签到 ,获得积分10
26秒前
Tonald Yang完成签到,获得积分20
26秒前
完美世界应助科研通管家采纳,获得10
26秒前
Jasper应助科研通管家采纳,获得30
26秒前
fhz完成签到,获得积分10
29秒前
鲸鱼打滚完成签到 ,获得积分10
29秒前
KaiZI完成签到 ,获得积分10
31秒前
瞿霞完成签到 ,获得积分10
33秒前
wangji_2017完成签到,获得积分10
36秒前
奇博士完成签到,获得积分10
37秒前
逝水完成签到 ,获得积分10
38秒前
Snow完成签到 ,获得积分10
45秒前
Jankim完成签到 ,获得积分10
49秒前
www完成签到 ,获得积分10
49秒前
111111完成签到,获得积分10
53秒前
庚朝年完成签到 ,获得积分10
53秒前
子明完成签到 ,获得积分10
54秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3758260
求助须知:如何正确求助?哪些是违规求助? 3301134
关于积分的说明 10116546
捐赠科研通 3015623
什么是DOI,文献DOI怎么找? 1656219
邀请新用户注册赠送积分活动 790250
科研通“疑难数据库(出版商)”最低求助积分说明 753766