卤化物
光致发光
失真(音乐)
钙钛矿(结构)
材料科学
光电子学
光伏
纳米技术
结晶学
化学
无机化学
生态学
光伏系统
CMOS芯片
生物
放大器
作者
Xujie Lü,Constantinos C. Stoumpos,Qingyang Hu,Xuedan Ma,Dongzhou Zhang,Songhao Guo,Justin M. Hoffman,Kejun Bu,Xiaofeng Guo,Yingqi Wang,Cheng Ji,Haijie Chen,Hongwu Xu,Q. X. Jia,Wenge Yang,Mercouri G. Kanatzidis,Ho‐kwang Mao
摘要
Metal halide perovskites possess unique atomic and electronic configurations that endow them with high defect tolerance and enable high-performance photovoltaics and optoelectronics. Perovskite light-emitting diodes have achieved an external quantum efficiency of over 20%. Despite tremendous progress, fundamental questions remain, such as how structural distortion affects the optical properties. Addressing their relationships is considerably challenging due to the scarcity of effective diagnostic tools during structural and property tuning as well as the limited tunability achievable by conventional methods. Here, using pressure and chemical methods to regulate the metal off-centering distortion, we demonstrate the giant tunability of photoluminescence (PL) in both the intensity (>20 times) and wavelength (>180 nm/GPa) in the highly distorted halide perovskites [CH3NH3GeI3, HC(NH2)2GeI3, and CsGeI3]. Using advanced in situ high-pressure probes and first-principles calculations, we quantitatively reveal a universal relationship whereby regulating the level of off-centering distortion towards 0.2 leads to the best PL performance in the halide perovskites. By applying this principle, intense PL can still be induced by substituting CH3NH3+ with Cs+ to control the distortion in (CH3NH3)1-xCsxGeI3, where the chemical substitution plays a similar role as external pressure. The compression of a fully substituted sample of CsGeI3 further tunes the distortion to the optimal value at 0.7 GPa, which maximizes the emission with a 10-fold enhancement. This work not only demonstrates a quantitative relationship between structural distortion and PL property of the halide perovskites but also illustrates the use of knowledge gained from high-pressure research to achieve the desired properties by ambient methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI