激光诱导击穿光谱
火星探测计划
卷积神经网络
探测器
计算机科学
人工智能
信号(编程语言)
校准
激光器
任务(项目管理)
过程(计算)
光谱学
遥感
模式识别(心理学)
光学
物理
工程类
电信
系统工程
地质学
操作系统
程序设计语言
量子力学
天文
作者
Juan Castorena,Diane Oyen,A. Ollila,Carey Legett,N. Lanza
标识
DOI:10.1016/j.sab.2021.106125
摘要
This work proposes a spectral convolutional neural network (CNN) operating on laser induced breakdown spectroscopy (LIBS) signals to learn to (1) disentangle spectral signals from the sources of sensor uncertainty (i.e., pre-process) and (2) get qualitative and quantitative measures of chemical content of a sample given a spectral signal (i.e., calibrate). Once the spectral CNN is trained, it can accomplish either task through a single feed-forward pass, with real-time benefits and without any additional side information requirements including dark current, system response, temperature and detector-to-target range. Our experiments demonstrate that the proposed method outperforms the existing approaches used by the Mars Science Lab for pre-processing and calibration for remote sensing observations from the Mars rover, ‘Curiosity’.
科研通智能强力驱动
Strongly Powered by AbleSci AI