清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Predictive modeling of blood pressure during hemodialysis: a comparison of linear model, random forest, support vector regression, XGBoost, LASSO regression and ensemble method

随机森林 Lasso(编程语言) 回归分析 回归 线性回归 支持向量机 计算机科学 统计 血压 血液透析 数学 医学 人工智能 内科学 万维网
作者
Jiun-Chi Huang,Yi‐Chun Tsai,Pei‐Yu Wu,Yu-Hui Lien,Chih-Yi Chien,Chien-Feng Kuo,Jeng-Fung Hung,Szu-Chia Chen,Chao‐Hung Kuo
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:195: 105536-105536 被引量:71
标识
DOI:10.1016/j.cmpb.2020.105536
摘要

Abstract Background Intradialytic hypotension (IDH) is commonly occurred and links to higher mortality among patients undergoing hemodialysis (HD). Its early prediction and prevention will dramatically improve the quality of life. However, predicting the occurrence of IDH clinically is not simple. The aims of this study are to develop an intelligent system with capability of predicting blood pressure (BP) during HD, and to further compare different machine learning algorithms for next systolic BP (SBP) prediction. Methods This study presented comprehensive comparisons among linear regression model, least absolute shrinkage and selection operator (LASSO), tree-based ensemble machine learning models (random forest [RF] and extreme gradient boosting [XGBoost]), and support vector regression to predict the BP during HD treatment based on 200 and 48 maintenance HD patients containing a total of 7,180 and 2,065 BP records for the training and test dataset, respectively. Ensemble method also was computed to obtain better predictive performance. We compared the developed models based on R2, root mean square error (RMSE) and mean absolute error (MAE). Results We found that RF (R2=0.95, RMSE=6.64, MAE=4.90) and XGBoost (R2=1.00, RMSE=1.83, MAE=1.29) had comparable predictive performance on the training dataset. However, RF (R2=0.49, RMSE=16.24, MAE=12.14) had more accurate than XGBoost (R2=0.41, RMSE=17.65, MAE=13.47) on testing dataset. Among these models, the ensemble method (R2=0.50, RMSE=16.01, MAE=11.97) had the best performance on testing dataset for next SBP prediction. Conclusions We compared five machine learning and an ensemble method for next SBP prediction. Among all studied algorithms, th e RF and the ensemble method have the better predictive performance. The prediction models using ensemble method for intradialytic BP profiling may be able to assist the HD staff or physicians in individualized care and prompt intervention for patients’ safety and improve care of HD patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
12秒前
53秒前
ATK20000完成签到 ,获得积分10
1分钟前
依依完成签到 ,获得积分10
1分钟前
1分钟前
zengtx1发布了新的文献求助10
2分钟前
renjianbaiye完成签到 ,获得积分10
2分钟前
2分钟前
零度沸腾完成签到 ,获得积分10
2分钟前
mmyhn发布了新的文献求助10
3分钟前
月亮与六便士完成签到 ,获得积分10
3分钟前
铜豌豆完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
想睡觉亦寻完成签到 ,获得积分10
4分钟前
4分钟前
wangye完成签到 ,获得积分10
4分钟前
5分钟前
___淡完成签到 ,获得积分10
5分钟前
HuiHui完成签到,获得积分10
5分钟前
6分钟前
6分钟前
小草完成签到,获得积分10
6分钟前
7分钟前
刘刘完成签到 ,获得积分10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
丘比特应助科研通管家采纳,获得10
8分钟前
weilei完成签到,获得积分10
8分钟前
9分钟前
共享精神应助科研通管家采纳,获得10
10分钟前
10分钟前
何琳发布了新的文献求助10
10分钟前
顺利千兰发布了新的文献求助200
10分钟前
无花果应助何琳采纳,获得10
10分钟前
搜集达人应助何琳采纳,获得10
10分钟前
Jasper应助何琳采纳,获得10
10分钟前
在水一方应助何琳采纳,获得10
10分钟前
领导范儿应助何琳采纳,获得10
10分钟前
英姑应助何琳采纳,获得10
10分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3413375
求助须知:如何正确求助?哪些是违规求助? 3015724
关于积分的说明 8871675
捐赠科研通 2703441
什么是DOI,文献DOI怎么找? 1482290
科研通“疑难数据库(出版商)”最低求助积分说明 685177
邀请新用户注册赠送积分活动 679951