Hollow ZnS–CdS nanocage based photoelectrochemical sensor combined with molecularly imprinting technology for sensitive detection of oxytetracycline

纳米笼 检出限 光电流 聚合物 分子印迹聚合物 异质结 化学工程 分子 化学 纳米技术 材料科学 分子印迹 色谱法 选择性 光电子学 有机化学 催化作用 工程类 复合材料
作者
Xinyu Bai,Yao Zhang,Wenkai Gao,Danyang Zhao,Da‐Peng Yang,Nengqin Jia
出处
期刊:Biosensors and Bioelectronics [Elsevier]
卷期号:168: 112522-112522 被引量:90
标识
DOI:10.1016/j.bios.2020.112522
摘要

A novel hollow ZnS–CdS nanocage-based molecularly imprinted photoelectrochemical (ZnS–CdS/rMIP PEC) sensor was designed for sensitive detection of oxytetracycline (OTC). O-phenylenediamine was electropolymerized onto hollow ZnS–CdS nanocages to form a polymer film, and then OTC molecules were imprinted on the polymer film through hydrogen bonding. When OTC was eluted, many specific recognition sites were formed on the polymer membrane for detecting OTC in samples. It is worth noting that the rhombohedral dodecahedral structure of hollow ZnS–CdS nanocage can provide large specific surface area, allowing more OTC molecules to be imprinted into the polymer film. Moreover, the unique hollow structure and the heterojunction formed by ZnS and CdS can significantly enhance the photocurrent response. Furthermore, molecular imprint polymer (MIP) technology greatly improves the selectivity and sensitivity of the constructed PEC sensor for detection of OTC. Under optimal conditions, the ZnS–CdS/rMIP PEC sensor has prominent linear relationship in the range of OTC concentration from 1 nmol L−1 to 3 μmol L−1, and the detection limit is 0.10 nmol L−1 (S/N = 3). It is gratifying that the fabricated ZnS–CdS/rMIP PEC sensor displays excellent selectivity for OTC detection when interferences with similar structure exist. It also exhibits superior reproducibility and stability as well as high recovery in the investigation of actual water samples. The combination of PEC and MIP technology will provide significant reference value for effective and rapid detection of other pollutants in the environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GAS发布了新的文献求助10
刚刚
2秒前
4秒前
4秒前
慕青应助bionova采纳,获得10
5秒前
阔达的花卷完成签到 ,获得积分10
5秒前
6秒前
hrq发布了新的文献求助10
9秒前
蘇q发布了新的文献求助10
10秒前
10秒前
搜集达人应助得一采纳,获得10
12秒前
12秒前
13秒前
DUANYIEN发布了新的文献求助10
13秒前
15秒前
逻辑猫发布了新的文献求助20
16秒前
Lee66发布了新的文献求助10
17秒前
阿星完成签到,获得积分10
17秒前
huxiao发布了新的文献求助10
17秒前
隐形曼青应助勤奋荔枝采纳,获得10
19秒前
bionova完成签到,获得积分10
19秒前
mhr完成签到,获得积分10
22秒前
ding应助huxiao采纳,获得10
23秒前
鄢廷芮发布了新的文献求助10
24秒前
Patty发布了新的文献求助10
24秒前
天天快乐应助badercao采纳,获得30
24秒前
25秒前
yll完成签到,获得积分10
25秒前
竹筏过海应助mhr采纳,获得50
26秒前
26秒前
和你就是童话完成签到 ,获得积分10
27秒前
27秒前
星河发布了新的文献求助10
28秒前
28秒前
DUANYIEN完成签到,获得积分10
28秒前
29秒前
阿欢完成签到 ,获得积分10
30秒前
RBT发布了新的文献求助10
30秒前
31秒前
彭于晏应助科研通管家采纳,获得30
31秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3475587
求助须知:如何正确求助?哪些是违规求助? 3067456
关于积分的说明 9104167
捐赠科研通 2758955
什么是DOI,文献DOI怎么找? 1513845
邀请新用户注册赠送积分活动 699823
科研通“疑难数据库(出版商)”最低求助积分说明 699197