数学
反应扩散系统
论证(复杂分析)
连接(主束)
扩散
热方程
热内核
数学分析
核(代数)
牙石(牙科)
纯数学
热力学
几何学
医学
生物化学
物理
化学
牙科
出处
期刊:Analysis & PDE
[Mathematical Sciences Publishers]
日期:2020-12-28
卷期号:13 (8): 2259-2288
被引量:3
标识
DOI:10.2140/apde.2020.13.2259
摘要
This paper studies the phenomenon of invasion for heterogeneous reaction-diffusion equations in periodic domains with monostable and combustion reaction terms. We give an answer to a question rised by Berestycki, Hamel and Nadirashvili in [5] concerning the connection between the speed of invasion and the speed of fronts. To do so, we extend the classical Freidlin-Gartner formula to such equations, using a geometrical argument devised by Rossi in [17], and derive some bounds on the speed of fronts using estimates on the heat kernel.
科研通智能强力驱动
Strongly Powered by AbleSci AI