Machine learning to guide the use of adjuvant therapies for breast cancer

概化理论 可解释性 乳腺癌 医学 肿瘤科 癌症 内科学 机器学习 辅助治疗 人工智能 医学物理学 计算机科学 数学 统计
作者
Ahmed M. Alaa,Deepti Gurdasani,Adrian L. Harris,Jem Rashbass,Mihaela van der Schaar
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:3 (8): 716-726 被引量:36
标识
DOI:10.1038/s42256-021-00353-8
摘要

Accurate prediction of the individualized survival benefit of adjuvant therapy is key to making informed therapeutic decisions for patients with early invasive breast cancer. Machine learning technologies can enable accurate prognostication of patient outcomes under different treatment options by modelling complex interactions between risk factors in a data-driven fashion. Here, we use an automated and interpretable machine learning algorithm to develop a breast cancer prognostication and treatment benefit prediction model—Adjutorium—using data from large-scale cohorts of nearly one million women captured in the national cancer registries of the United Kingdom and the United States. We trained and internally validated the Adjutorium model on 395,862 patients from the UK National Cancer Registration and Analysis Service (NCRAS), and then externally validated the model among 571,635 patients from the US Surveillance, Epidemiology, and End Results (SEER) programme. Adjutorium exhibited significantly improved accuracy compared to the major prognostic tool in current clinical use (PREDICT v2.1) in both internal and external validation. Importantly, our model substantially improved accuracy in specific subgroups known to be under-served by existing models. Adjutorium is currently implemented as a web-based decision support tool ( https://vanderschaar-lab.com/adjutorium/ ) to aid decisions on adjuvant therapy in women with early breast cancer, and can be publicly accessed by patients and clinicians worldwide. Methods are available to support clinical decisions regarding adjuvant therapies in breast cancer, but they have limitations in accuracy, generalizability and interpretability. Alaa et al. present an automated machine learning model of breast cancer that predicts patient survival and adjuvant treatment benefit to guide personalized therapeutic decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小巧的柏柳完成签到,获得积分10
2秒前
铁甲小杨完成签到,获得积分10
3秒前
李爱国应助can采纳,获得30
3秒前
今天不看文献完成签到,获得积分10
4秒前
桐桐应助a378514670采纳,获得10
6秒前
pop完成签到,获得积分10
7秒前
Maqian发布了新的文献求助10
8秒前
研友_VZG7GZ应助Palpitate采纳,获得10
9秒前
vampirell完成签到,获得积分10
10秒前
lidagou完成签到,获得积分10
11秒前
想毕业的小橙子完成签到,获得积分10
11秒前
starry发布了新的文献求助10
12秒前
萧水白应助FYF采纳,获得20
12秒前
今后应助苹果采纳,获得10
13秒前
pop发布了新的文献求助10
13秒前
14秒前
皮皮虾发布了新的文献求助10
15秒前
15秒前
18秒前
18秒前
18秒前
lgold发布了新的文献求助10
18秒前
20秒前
irvinzp完成签到,获得积分10
22秒前
23秒前
23秒前
23秒前
Palpitate发布了新的文献求助10
24秒前
25秒前
25秒前
zz发布了新的文献求助10
26秒前
can发布了新的文献求助10
27秒前
28秒前
Djnsbj发布了新的文献求助10
28秒前
29秒前
ZiXuanCui发布了新的文献求助60
31秒前
祝君早日毕业完成签到,获得积分10
31秒前
32秒前
misu发布了新的文献求助10
34秒前
华仔应助在途中采纳,获得10
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967409
求助须知:如何正确求助?哪些是违规求助? 3512686
关于积分的说明 11164710
捐赠科研通 3247680
什么是DOI,文献DOI怎么找? 1793964
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804498