概化理论
可解释性
乳腺癌
医学
肿瘤科
癌症
内科学
机器学习
辅助治疗
人工智能
医学物理学
计算机科学
统计
数学
作者
Ahmed M. Alaa,Deepti Gurdasani,Adrian L. Harris,Jem Rashbass,Mihaela van der Schaar
标识
DOI:10.1038/s42256-021-00353-8
摘要
Accurate prediction of the individualized survival benefit of adjuvant therapy is key to making informed therapeutic decisions for patients with early invasive breast cancer. Machine learning technologies can enable accurate prognostication of patient outcomes under different treatment options by modelling complex interactions between risk factors in a data-driven fashion. Here, we use an automated and interpretable machine learning algorithm to develop a breast cancer prognostication and treatment benefit prediction model—Adjutorium—using data from large-scale cohorts of nearly one million women captured in the national cancer registries of the United Kingdom and the United States. We trained and internally validated the Adjutorium model on 395,862 patients from the UK National Cancer Registration and Analysis Service (NCRAS), and then externally validated the model among 571,635 patients from the US Surveillance, Epidemiology, and End Results (SEER) programme. Adjutorium exhibited significantly improved accuracy compared to the major prognostic tool in current clinical use (PREDICT v2.1) in both internal and external validation. Importantly, our model substantially improved accuracy in specific subgroups known to be under-served by existing models. Adjutorium is currently implemented as a web-based decision support tool ( https://vanderschaar-lab.com/adjutorium/ ) to aid decisions on adjuvant therapy in women with early breast cancer, and can be publicly accessed by patients and clinicians worldwide. Methods are available to support clinical decisions regarding adjuvant therapies in breast cancer, but they have limitations in accuracy, generalizability and interpretability. Alaa et al. present an automated machine learning model of breast cancer that predicts patient survival and adjuvant treatment benefit to guide personalized therapeutic decisions.
科研通智能强力驱动
Strongly Powered by AbleSci AI