Acrophobia Quantified by EEG Based on CNN Incorporating Granger Causality

任务(项目管理) 班级(哲学) 计算机科学 人工智能 机器学习 工程类 系统工程
作者
Fo Hu,Hong Wang,Qiaoxiu Wang,Naishi Feng,Jichi Chen,Tao Zhang
出处
期刊:International Journal of Neural Systems [World Scientific]
卷期号:31 (03): 2050069-2050069 被引量:12
标识
DOI:10.1142/s0129065720500690
摘要

The aim of this study is to quantify acrophobia and provide safety advices for high-altitude workers. Considering that acrophobia is a fuzzy quantity that cannot be accurately evaluated by conventional detection methods, we propose a comprehensive solution to quantify acrophobia. Specifically, this study simulates a virtual reality environment called High-altitude Plank Walking Challenge, which provides a safe and controlled experimental environment for subjects. Besides, a method named Granger Causality Convolutional Neural Network (GCCNN) combining convolutional neural network and Granger causality functional brain network is proposed to analyze the subjects’ noninvasive scalp EEG signals. Here, the GCCNN method is used to distinguish the subjects with severe acrophobia, moderate acrophobia, and no acrophobia in a three-class classification task or no acrophobia and acrophobia in a two-class classification task. Compared with the mainstream methods, the GCCNN method achieves better classification performance, with an accuracy of 98.74% for the two-class classification task (no acrophobia versus acrophobia) and of 98.47% for the three-class classification task (no acrophobia versus moderate acrophobia versus severe acrophobia). Consequently, our proposed GCCNN method can provide more accurate quantitative results than the comparative methods, making it to be more competitive in further practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yar应助meng采纳,获得10
刚刚
良辰应助碧蓝冰烟采纳,获得10
刚刚
深情安青应助碧蓝冰烟采纳,获得10
刚刚
xjcy应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
2秒前
Ava应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
烧瓶杀手应助科研通管家采纳,获得20
2秒前
今后应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
3秒前
xjcy应助科研通管家采纳,获得10
3秒前
小绵羊发布了新的文献求助10
3秒前
乐乐应助xiaowang采纳,获得10
3秒前
jyy应助科研通管家采纳,获得10
3秒前
3秒前
xjcy应助科研通管家采纳,获得10
3秒前
LiuHD发布了新的文献求助10
3秒前
Jiaowen完成签到,获得积分10
3秒前
漂亮的大磊子完成签到,获得积分10
4秒前
繁笙发布了新的文献求助10
5秒前
赘婿应助dashuaib采纳,获得10
5秒前
6秒前
懒洋洋大王完成签到,获得积分20
7秒前
丰知然应助小绵羊采纳,获得10
7秒前
SciGPT应助小绵羊采纳,获得10
7秒前
8秒前
彭于晏应助小辉辉采纳,获得10
8秒前
9秒前
汀上白沙完成签到,获得积分10
9秒前
Akim应助细心的凌香采纳,获得10
10秒前
无限的高烽完成签到,获得积分10
10秒前
养恩完成签到,获得积分10
10秒前
虚拟小号发布了新的文献求助10
12秒前
13秒前
14秒前
14秒前
14秒前
车道出完成签到,获得积分10
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
錢鍾書楊絳親友書札 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3297232
求助须知:如何正确求助?哪些是违规求助? 2932727
关于积分的说明 8458768
捐赠科研通 2605447
什么是DOI,文献DOI怎么找? 1422342
科研通“疑难数据库(出版商)”最低求助积分说明 661364
邀请新用户注册赠送积分活动 644655