CrackU‐net: A novel deep convolutional neural network for pixelwise pavement crack detection

卷积神经网络 人工智能 计算机科学 网(多面体) 模式识别(心理学) 人工神经网络 数学 几何学
作者
Ju Huyan,Wei Li,Susan Tighe,Zhengchao Xu,Junzhi Zhai
出处
期刊:Structural control & health monitoring [Wiley]
卷期号:27 (8) 被引量:248
标识
DOI:10.1002/stc.2551
摘要

Periodic road crack monitoring is an essential procedure for effective pavement management. Highly efficient and accurate crack measurements are key research topics in both academia and industry. Automatic methods gradually replaced traditional manual surveys for more reliable evaluation outputs and better efficiency, whereas the devices are not available to all functional classes of pavements and different departments considering the high cost versus the limited budget. Recently, the widespread use of smartphones and digital cameras made it possible to collect pavement surface crack images at an affordable price in easier ways. However, the qualities of these crack images are diversely influenced by the noises from pavement background, roadways, and so forth. Thus, traditional methods usually fail to extract accurate crack information from pavement images. Therefore, this research proposes a state-of-the-art pixelwise crack detection architecture called CrackU-net, which is featured by its utilization of advanced deep convolutional neural network technology. CrackU-net achieved pixelwise crack detection through convolution, pooling, transpose convolution, and concatenation operations, forming the "U"-shaped model architecture. The model is trained and validated by 3,000 pavement crack images, in which 2,400 for training and 600 for validating, using the Adam algorithm. CrackU-net has the performance of loss = 0.025, accuracy = 0.9901, precision = 0.9856, recall = 0.9798, and F-measure = 0.9842 with learning rate of 10−2. Meanwhile, the false-positive crack detection problem is avoided in CrackU-net. Therefore, CrackU-net outperforms both traditional approaches and fully convolutional network (FCN) and U-net for pixelwise crack detections.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Realrr完成签到 ,获得积分10
1秒前
碧蓝沛儿发布了新的文献求助10
1秒前
2秒前
2秒前
YG123完成签到,获得积分10
3秒前
清爽的绫完成签到,获得积分10
3秒前
张宇完成签到,获得积分10
3秒前
zho发布了新的文献求助10
4秒前
4秒前
5秒前
乐观幻天完成签到,获得积分10
5秒前
淡然发布了新的文献求助20
5秒前
XiaoM发布了新的文献求助10
6秒前
夏筱应助灰灰一定行采纳,获得10
6秒前
科研通AI2S应助灰灰一定行采纳,获得10
6秒前
CodeCraft应助灰灰一定行采纳,获得10
6秒前
今后应助灰灰一定行采纳,获得10
6秒前
阿狸完成签到,获得积分10
8秒前
小斌仔完成签到,获得积分10
8秒前
mingyue发布了新的文献求助10
9秒前
9秒前
9秒前
张宇发布了新的文献求助10
9秒前
10秒前
10秒前
MMMgao发布了新的文献求助10
11秒前
李李发布了新的文献求助30
11秒前
11秒前
留言完成签到,获得积分10
11秒前
深情安青应助T拐拐采纳,获得10
12秒前
天天快乐应助酷炫的皮带采纳,获得10
12秒前
12秒前
小斌仔发布了新的文献求助30
13秒前
可靠的豌豆完成签到,获得积分10
13秒前
蜂蜜完成签到,获得积分10
14秒前
David完成签到,获得积分10
14秒前
Let It Be完成签到,获得积分10
15秒前
妮夏发布了新的文献求助10
15秒前
科研通AI2S应助神秘人X采纳,获得10
15秒前
zww发布了新的文献求助10
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305153
求助须知:如何正确求助?哪些是违规求助? 2939026
关于积分的说明 8491012
捐赠科研通 2613498
什么是DOI,文献DOI怎么找? 1427461
科研通“疑难数据库(出版商)”最低求助积分说明 663007
邀请新用户注册赠送积分活动 647648