CrackU‐net: A novel deep convolutional neural network for pixelwise pavement crack detection

卷积神经网络 人工智能 计算机科学 网(多面体) 模式识别(心理学) 人工神经网络 数学 几何学
作者
Ju Huyan,Wei Li,Susan Tighe,Zhengchao Xu,Junzhi Zhai
出处
期刊:Structural control & health monitoring [Wiley]
卷期号:27 (8) 被引量:261
标识
DOI:10.1002/stc.2551
摘要

Periodic road crack monitoring is an essential procedure for effective pavement management. Highly efficient and accurate crack measurements are key research topics in both academia and industry. Automatic methods gradually replaced traditional manual surveys for more reliable evaluation outputs and better efficiency, whereas the devices are not available to all functional classes of pavements and different departments considering the high cost versus the limited budget. Recently, the widespread use of smartphones and digital cameras made it possible to collect pavement surface crack images at an affordable price in easier ways. However, the qualities of these crack images are diversely influenced by the noises from pavement background, roadways, and so forth. Thus, traditional methods usually fail to extract accurate crack information from pavement images. Therefore, this research proposes a state-of-the-art pixelwise crack detection architecture called CrackU-net, which is featured by its utilization of advanced deep convolutional neural network technology. CrackU-net achieved pixelwise crack detection through convolution, pooling, transpose convolution, and concatenation operations, forming the "U"-shaped model architecture. The model is trained and validated by 3,000 pavement crack images, in which 2,400 for training and 600 for validating, using the Adam algorithm. CrackU-net has the performance of loss = 0.025, accuracy = 0.9901, precision = 0.9856, recall = 0.9798, and F-measure = 0.9842 with learning rate of 10−2. Meanwhile, the false-positive crack detection problem is avoided in CrackU-net. Therefore, CrackU-net outperforms both traditional approaches and fully convolutional network (FCN) and U-net for pixelwise crack detections.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MITNO1发布了新的文献求助10
1秒前
3秒前
一滴露儿关注了科研通微信公众号
3秒前
4秒前
椎珏完成签到,获得积分10
6秒前
Asuna发布了新的文献求助10
7秒前
甘乐应助JEFFREYJIA采纳,获得10
8秒前
张雷给abby的求助进行了留言
9秒前
9秒前
椎珏发布了新的文献求助10
9秒前
9秒前
鹤唳完成签到,获得积分10
9秒前
13秒前
zxq完成签到,获得积分10
14秒前
14秒前
风思雅完成签到,获得积分10
14秒前
繁荣的康乃馨应助Eisbecher采纳,获得10
15秒前
16秒前
乐乐应助Lizhe123采纳,获得10
16秒前
18秒前
zhangyu应助豆豆采纳,获得10
18秒前
善学以致用应助521采纳,获得10
18秒前
sia发布了新的文献求助10
20秒前
zy发布了新的文献求助10
21秒前
HarryChan应助Coral.采纳,获得10
21秒前
Big胆完成签到,获得积分10
21秒前
轻松的雨竹完成签到,获得积分10
24秒前
舒服的踏歌完成签到,获得积分10
26秒前
希望天下0贩的0应助ss_hHe采纳,获得10
26秒前
leoskrrr完成签到,获得积分10
29秒前
30秒前
31秒前
34秒前
King发布了新的文献求助10
34秒前
36秒前
36秒前
明理囧发布了新的文献求助10
37秒前
37秒前
38秒前
40秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992928
求助须知:如何正确求助?哪些是违规求助? 3533703
关于积分的说明 11263585
捐赠科研通 3273517
什么是DOI,文献DOI怎么找? 1806067
邀请新用户注册赠送积分活动 882931
科研通“疑难数据库(出版商)”最低求助积分说明 809629