CrackU‐net: A novel deep convolutional neural network for pixelwise pavement crack detection

卷积神经网络 人工智能 计算机科学 网(多面体) 模式识别(心理学) 人工神经网络 数学 几何学
作者
Ju Huyan,Wei Li,Susan Tighe,Zhengchao Xu,Junzhi Zhai
出处
期刊:Structural control & health monitoring [Wiley]
卷期号:27 (8) 被引量:261
标识
DOI:10.1002/stc.2551
摘要

Periodic road crack monitoring is an essential procedure for effective pavement management. Highly efficient and accurate crack measurements are key research topics in both academia and industry. Automatic methods gradually replaced traditional manual surveys for more reliable evaluation outputs and better efficiency, whereas the devices are not available to all functional classes of pavements and different departments considering the high cost versus the limited budget. Recently, the widespread use of smartphones and digital cameras made it possible to collect pavement surface crack images at an affordable price in easier ways. However, the qualities of these crack images are diversely influenced by the noises from pavement background, roadways, and so forth. Thus, traditional methods usually fail to extract accurate crack information from pavement images. Therefore, this research proposes a state-of-the-art pixelwise crack detection architecture called CrackU-net, which is featured by its utilization of advanced deep convolutional neural network technology. CrackU-net achieved pixelwise crack detection through convolution, pooling, transpose convolution, and concatenation operations, forming the "U"-shaped model architecture. The model is trained and validated by 3,000 pavement crack images, in which 2,400 for training and 600 for validating, using the Adam algorithm. CrackU-net has the performance of loss = 0.025, accuracy = 0.9901, precision = 0.9856, recall = 0.9798, and F-measure = 0.9842 with learning rate of 10−2. Meanwhile, the false-positive crack detection problem is avoided in CrackU-net. Therefore, CrackU-net outperforms both traditional approaches and fully convolutional network (FCN) and U-net for pixelwise crack detections.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助初空月儿采纳,获得10
1秒前
量子星尘发布了新的文献求助10
3秒前
求助人员应助kingwill采纳,获得30
3秒前
Twonej应助机灵柚子采纳,获得50
4秒前
DONG发布了新的文献求助10
4秒前
4秒前
yoarfol完成签到,获得积分20
5秒前
笑哈哈发布了新的文献求助10
7秒前
Mira关注了科研通微信公众号
7秒前
7秒前
顾矜应助季同学采纳,获得10
8秒前
8秒前
8秒前
漆唐完成签到,获得积分10
9秒前
小橙完成签到 ,获得积分10
9秒前
NJY发布了新的文献求助10
10秒前
一区TOP发发发完成签到,获得积分20
10秒前
天天快乐应助猪猪hero采纳,获得10
10秒前
量子星尘发布了新的文献求助10
10秒前
传奇3应助落后果汁采纳,获得10
10秒前
自觉的涵易完成签到 ,获得积分20
11秒前
星辰大海应助xiaoshuwang采纳,获得10
11秒前
Twonej应助以后采纳,获得20
12秒前
12秒前
852应助随风采纳,获得10
13秒前
13秒前
13秒前
???发布了新的文献求助30
15秒前
Set4Life完成签到,获得积分10
15秒前
NexusExplorer应助poe采纳,获得10
16秒前
17秒前
17秒前
梅赛德斯发布了新的文献求助10
18秒前
Mira发布了新的文献求助10
18秒前
BenQiu发布了新的文献求助10
18秒前
19秒前
苟子发布了新的文献求助10
20秒前
李爱国应助shenmeijing采纳,获得10
20秒前
香蕉念薇完成签到,获得积分10
20秒前
buno发布了新的文献求助10
20秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5704559
求助须知:如何正确求助?哪些是违规求助? 5158120
关于积分的说明 15242392
捐赠科研通 4858539
什么是DOI,文献DOI怎么找? 2607330
邀请新用户注册赠送积分活动 1558287
关于科研通互助平台的介绍 1516105