材料科学
电极
原电池
电偶腐蚀
溶解
腐蚀
铜
金属锂
冶金
电解质
金属
法拉第效率
锂(药物)
阳极
化学工程
化学
工程类
内分泌学
物理化学
医学
作者
Aleksei Kolesnikov,Martin Kolek,Jan Frederik Dohmann,Fabian Horsthemke,Markus Börner,Peter Bieker,Martin Winter,Marian Cristian Stan
标识
DOI:10.1002/aenm.202000017
摘要
Abstract Lithium metal is considered to be the most promising anode for the next generation of batteries if the issues related to safety and low coulombic efficiency can be overcome. It is known that the initial morphology of the lithium metal anode has a great influence on the cycling characteristics of a lithium metal battery (LMB). Lithium‐powder‐based electrodes (Li p ‐electrodes) are reported to diminish the occurrence of high surface area lithium deposits. Usually, ultra‐thin lithium foils (<50 µm) and Li p ‐electrodes are prepared on a copper substrate, thus a metal–metal contact area is generated. The combination of these two metals in the presence of an electrolyte, however, can lead to galvanic corrosion. Herein, the corrosion behavior of Li p ‐electrodes is studied. The porosity of such electrodes leads to a high amount of accessible Cu surface in contact with electrolyte. As a consequence, Li p ‐electrodes aged for 1 week in the electrolyte show spontaneous lithium dissolution near the junction to copper and void formation on the lithium‐powder particles. This corrosion process affects the delivered capacity of Li p ‐electrodes and increases the overvoltage of the lithium electrodissolution process. The occurrence of corrosion at the Cu|Li p interface raises concerns about the practicality of multi‐metallic component systems for LMBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI