A Hidden Markov Model Based Unsupervised Algorithm for Sleep/Wake Identification Using Actigraphy

算法 机器学习 模式识别(心理学) 活动识别 睡眠阶段 鉴定(生物学)
作者
Xinyue Li,Yunting Zhang,Fan Jiang,Hongyu Zhao
出处
期刊:arXiv: Applications 被引量:9
标识
DOI:10.1080/07420528.2020.1754848
摘要

Actigraphy is widely used in sleep studies but lacks a universal unsupervised algorithm for sleep/wake identification. In this study, we proposed a Hidden Markov Model (HMM) based unsupervised algorithm that can automatically and effectively infer sleep/wake states. It is an individualized data-driven approach that analyzes actigraphy from each individual respectively to learn activity characteristics and further separate sleep and wake states. We used Actiwatch and polysomnography (PSG) data from 43 individuals in the Multi-Ethnic Study of Atherosclerosis to evaluate the performance of our method. Epoch-by-epoch comparisons were made between our HMM algorithm and that embedded in the Actiwatch software (AS). The percent agreement between HMM and PSG was 85.7%, and that between AS and PSG was 84.7%. Positive predictive values for sleep epochs were 85.6% and 84.6% for HMM and AS, respectively, and 95.5% and 85.6% for wake epochs. Both methods have similar performance and tend to overestimate sleep and underestimate wake compared to PSG. Our HMM approach is able to quantify the variability in activity counts that allow us to differentiate relatively active and sedentary individuals: individuals with higher estimated variabilities tend to show more frequent sedentary behaviors. In conclusion, our unsupervised data-driven HMM algorithm achieves slightly better performance compared to the commonly used algorithm in the Actiwatch software. HMM can help expand the application of actigraphy in large-scale studies and in cases where intrusive PSG is hard to acquire or unavailable. In addition, the estimated HMM parameters can characterize individual activity patterns that can be utilized for further analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助MZ采纳,获得10
刚刚
大空翼发布了新的文献求助10
刚刚
刚刚
ljq发布了新的文献求助10
刚刚
刚刚
科研小牛马完成签到,获得积分10
1秒前
英姑应助习惯采纳,获得10
1秒前
快乐难敌发布了新的文献求助10
1秒前
1秒前
1秒前
坦率铅笔发布了新的文献求助10
1秒前
科研通AI2S应助lvshiwen采纳,获得10
1秒前
Kirito应助lvshiwen采纳,获得100
1秒前
夕诙应助lvshiwen采纳,获得30
1秒前
SwampMan完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
NexusExplorer应助鲤鱼涔雨采纳,获得10
3秒前
研友_VZG7GZ应助Hoyshin采纳,获得10
3秒前
qise应助懵懂的毛豆采纳,获得10
3秒前
晨纯完成签到,获得积分10
4秒前
5秒前
5秒前
勇哥你好发布了新的文献求助10
6秒前
6秒前
Dorjee发布了新的文献求助10
7秒前
精致的痞老板完成签到 ,获得积分10
7秒前
7秒前
大模型应助22222采纳,获得10
8秒前
8秒前
中岛悠斗完成签到,获得积分10
8秒前
SciGPT应助PPD采纳,获得30
9秒前
nuomici发布了新的文献求助10
9秒前
嘻嘻哈哈哈哈完成签到 ,获得积分10
9秒前
9秒前
Cool完成签到,获得积分10
10秒前
10秒前
10秒前
东C东C完成签到 ,获得积分20
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4602661
求助须知:如何正确求助?哪些是违规求助? 4011768
关于积分的说明 12420364
捐赠科研通 3692108
什么是DOI,文献DOI怎么找? 2035470
邀请新用户注册赠送积分活动 1068575
科研通“疑难数据库(出版商)”最低求助积分说明 953144