A Hidden Markov Model Based Unsupervised Algorithm for Sleep/Wake Identification Using Actigraphy

算法 机器学习 模式识别(心理学) 活动识别 睡眠阶段 鉴定(生物学)
作者
Xinyue Li,Yunting Zhang,Fan Jiang,Hongyu Zhao
出处
期刊:arXiv: Applications 被引量:9
标识
DOI:10.1080/07420528.2020.1754848
摘要

Actigraphy is widely used in sleep studies but lacks a universal unsupervised algorithm for sleep/wake identification. In this study, we proposed a Hidden Markov Model (HMM) based unsupervised algorithm that can automatically and effectively infer sleep/wake states. It is an individualized data-driven approach that analyzes actigraphy from each individual respectively to learn activity characteristics and further separate sleep and wake states. We used Actiwatch and polysomnography (PSG) data from 43 individuals in the Multi-Ethnic Study of Atherosclerosis to evaluate the performance of our method. Epoch-by-epoch comparisons were made between our HMM algorithm and that embedded in the Actiwatch software (AS). The percent agreement between HMM and PSG was 85.7%, and that between AS and PSG was 84.7%. Positive predictive values for sleep epochs were 85.6% and 84.6% for HMM and AS, respectively, and 95.5% and 85.6% for wake epochs. Both methods have similar performance and tend to overestimate sleep and underestimate wake compared to PSG. Our HMM approach is able to quantify the variability in activity counts that allow us to differentiate relatively active and sedentary individuals: individuals with higher estimated variabilities tend to show more frequent sedentary behaviors. In conclusion, our unsupervised data-driven HMM algorithm achieves slightly better performance compared to the commonly used algorithm in the Actiwatch software. HMM can help expand the application of actigraphy in large-scale studies and in cases where intrusive PSG is hard to acquire or unavailable. In addition, the estimated HMM parameters can characterize individual activity patterns that can be utilized for further analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XYN1发布了新的文献求助10
刚刚
1秒前
2秒前
无极微光应助卓头OvQ采纳,获得20
2秒前
2秒前
华仔应助论文小白采纳,获得10
3秒前
研友_VZG7GZ应助kyros采纳,获得10
3秒前
PONY完成签到,获得积分10
3秒前
canian完成签到,获得积分10
3秒前
4秒前
4秒前
2305814008发布了新的文献求助10
5秒前
6秒前
CL发布了新的文献求助10
6秒前
Lucas应助anhao采纳,获得10
6秒前
hrpppp完成签到,获得积分10
6秒前
狂风阿来完成签到 ,获得积分10
6秒前
6秒前
北执发布了新的文献求助10
6秒前
yan完成签到,获得积分10
7秒前
8秒前
科研通AI2S应助冷静新烟采纳,获得10
8秒前
Taozhi发布了新的文献求助30
10秒前
Wcy发布了新的文献求助10
10秒前
科研通AI6应助景琦采纳,获得10
11秒前
XX完成签到,获得积分20
11秒前
热心树叶应助shiyingying采纳,获得30
11秒前
12秒前
Gabriel完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
丘比特应助单薄的尔烟采纳,获得10
12秒前
12秒前
hl发布了新的文献求助10
13秒前
yuki发布了新的文献求助10
13秒前
博ge发布了新的文献求助10
14秒前
14秒前
16秒前
sun完成签到,获得积分20
16秒前
南山鹤完成签到,获得积分10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578435
求助须知:如何正确求助?哪些是违规求助? 4663226
关于积分的说明 14745504
捐赠科研通 4604000
什么是DOI,文献DOI怎么找? 2526820
邀请新用户注册赠送积分活动 1496380
关于科研通互助平台的介绍 1465718