加权
共轭梯度法
反演(地质)
线性化
算法
非线性系统
合成数据
计算机科学
傅里叶变换
非线性共轭梯度法
规范(哲学)
数学
应用数学
数学优化
梯度下降
数学分析
物理
地质学
人工神经网络
机器学习
法学
政治学
量子力学
构造盆地
古生物学
声学
作者
Saeed Vatankhah,Shuang Liu,Rosemary A. Renaut,Xiangyun Hu,Jarom D. Hogue,Mostafa Gharloghi
标识
DOI:10.1109/tgrs.2020.3033043
摘要
A generalized unifying approach for $L_{p}$-norm joint inversion of gravity and magnetic data using the cross-gradient constraint is presented. The presented framework incorporates stabilizers that use $L_{0}$, $L_{1}$, and $L_{2}$-norms of the model parameters, and/or the gradient of the model parameters. Furthermore, the formulation is developed from standard approaches for independent inversion of single data sets, and, thus, also facilitates the inclusion of necessary model and data weighting matrices that provide, for example, depth weighting and imposition of hard constraint data. The developed efficient algorithm can, therefore, be employed to provide physically-relevant smooth, sparse, or blocky target(s) which are relevant to the geophysical community. Here, the nonlinear objective function, that describes the inclusion of all stabilizing terms and the fit to data measurements, is minimized iteratively by imposing stationarity on the linear equation that results from applying linearization of the objective function about a starting model. To numerically solve the resulting linear system, at each iteration, the conjugate gradient algorithm is used. The general framework is then validated for three-dimensional synthetic models for both sparse and smooth reconstructions, and the results are compared with those of individual gravity and magnetic inversions. It is demonstrated that the presented joint inversion algorithm is practical and significantly improves reconstructed models obtained by independent inversion.
科研通智能强力驱动
Strongly Powered by AbleSci AI