An Efficient Alternating Algorithm for the Lp-Norm Cross-Gradient Joint Inversion of Gravity and Magnetic Data Using the 2-D Fast Fourier Transform

循环矩阵 加权 托普利兹矩阵 算法 数学 纯数学 物理 声学
作者
Saeed Vatankhah,Shuang Liu,Rosemary A. Renaut,Xiangyun Hu,Jarom David Hogue,Mostafa Gharloghi
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-16 被引量:14
标识
DOI:10.1109/tgrs.2020.3033043
摘要

An efficient algorithm for the $\mathrm {L}_{ \mathrm {p}}$ -norm joint inversion of gravity and magnetic data using the cross-gradient constraint is presented. The presented framework incorporates stabilizers that use $\mathrm {L}_{ \mathrm {p}}$ -norms ( $0\leq \mathrm {p} \leq 2$ ) of the model parameters, and/or the gradient of the model parameters. The formulation is developed from standard approaches for independent inversion of single data sets, and, thus, also facilitates the inclusion of necessary model and data weighting matrices, for example, depth weighting and hard constraint matrices. Using the block Toeplitz Toeplitz block structure of the underlying sensitivity matrices for gravity and magnetic models, when data are obtained on a uniform grid, the blocks for each layer of the depth are embedded in block circulant circulant block matrices. Then, all operations with these matrices are implemented efficiently using 2-D fast Fourier transforms, with a significant reduction in storage requirements. The nonlinear global objective function is minimized iteratively by imposing stationarity on the linear equation that results from applying linearization of the objective function about a starting model. To numerically solve the resulting linear system, at each iteration, the conjugate gradient algorithm is used. This is improved for large scale problems by the introduction of an algorithm in which updates for the magnetic and gravity parameter models are alternated at each iteration, further reducing total computational cost and storage requirements. Numerical results using a complicated 3-D synthetic model and real data sets obtained over the Galinge iron-ore deposit in the Qinghai province, north-west (NW) of China, demonstrate the efficiency of the presented algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐小赞发布了新的文献求助30
1秒前
1秒前
平淡的雍发布了新的文献求助20
1秒前
深情安青应助方超采纳,获得10
2秒前
zzzlll发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
JamesPei应助犹豫寒云采纳,获得10
4秒前
李健的小迷弟应助zhizhaomai采纳,获得30
4秒前
研友_VZG7GZ应助熬夜写论文采纳,获得10
6秒前
6秒前
尛瞐慶成发布了新的文献求助10
6秒前
6秒前
7秒前
gulu发布了新的文献求助10
7秒前
7秒前
hu发布了新的文献求助10
8秒前
ok关闭了ok文献求助
8秒前
顾天佑完成签到,获得积分10
8秒前
9秒前
朴实的白玉完成签到 ,获得积分10
10秒前
10秒前
顾天佑发布了新的文献求助10
11秒前
坚强冰蝶完成签到,获得积分20
12秒前
科研通AI2S应助刘yuer采纳,获得10
13秒前
平淡的雍发布了新的文献求助10
13秒前
RoseLuoZ发布了新的文献求助10
14秒前
赘婿应助科研棉花糖采纳,获得10
15秒前
wdd完成签到,获得积分10
15秒前
方超发布了新的文献求助10
15秒前
15秒前
坦率香水关注了科研通微信公众号
15秒前
16秒前
orixero应助Mars1998采纳,获得10
16秒前
16秒前
17秒前
18秒前
西余完成签到,获得积分10
18秒前
Jasper应助fouli采纳,获得10
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145597
求助须知:如何正确求助?哪些是违规求助? 2797033
关于积分的说明 7822546
捐赠科研通 2453369
什么是DOI,文献DOI怎么找? 1305607
科研通“疑难数据库(出版商)”最低求助积分说明 627514
版权声明 601464