An Efficient Alternating Algorithm for the Lp-Norm Cross-Gradient Joint Inversion of Gravity and Magnetic Data Using the 2-D Fast Fourier Transform

加权 共轭梯度法 反演(地质) 线性化 算法 非线性系统 合成数据 计算机科学 傅里叶变换 非线性共轭梯度法 规范(哲学) 数学 应用数学 数学优化 梯度下降 数学分析 物理 地质学 人工神经网络 机器学习 法学 政治学 量子力学 构造盆地 古生物学 声学
作者
Saeed Vatankhah,Shuang Liu,Rosemary A. Renaut,Xiangyun Hu,Jarom D. Hogue,Mostafa Gharloghi
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-16 被引量:33
标识
DOI:10.1109/tgrs.2020.3033043
摘要

A generalized unifying approach for $L_{p}$-norm joint inversion of gravity and magnetic data using the cross-gradient constraint is presented. The presented framework incorporates stabilizers that use $L_{0}$, $L_{1}$, and $L_{2}$-norms of the model parameters, and/or the gradient of the model parameters. Furthermore, the formulation is developed from standard approaches for independent inversion of single data sets, and, thus, also facilitates the inclusion of necessary model and data weighting matrices that provide, for example, depth weighting and imposition of hard constraint data. The developed efficient algorithm can, therefore, be employed to provide physically-relevant smooth, sparse, or blocky target(s) which are relevant to the geophysical community. Here, the nonlinear objective function, that describes the inclusion of all stabilizing terms and the fit to data measurements, is minimized iteratively by imposing stationarity on the linear equation that results from applying linearization of the objective function about a starting model. To numerically solve the resulting linear system, at each iteration, the conjugate gradient algorithm is used. The general framework is then validated for three-dimensional synthetic models for both sparse and smooth reconstructions, and the results are compared with those of individual gravity and magnetic inversions. It is demonstrated that the presented joint inversion algorithm is practical and significantly improves reconstructed models obtained by independent inversion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黑森林完成签到,获得积分10
刚刚
CodeCraft应助今晚打老虎采纳,获得30
刚刚
shine完成签到,获得积分10
1秒前
犹豫的初丹完成签到,获得积分10
1秒前
1秒前
1秒前
我是老大应助zhihui采纳,获得10
2秒前
2秒前
3秒前
3秒前
3秒前
momosijia发布了新的文献求助10
4秒前
4秒前
自信晟睿发布了新的文献求助10
4秒前
平淡雪枫完成签到 ,获得积分10
4秒前
LS31发布了新的文献求助20
5秒前
Tingyu完成签到,获得积分10
5秒前
小欣发布了新的文献求助10
5秒前
LewisAcid举报量子星尘求助涉嫌违规
6秒前
6秒前
HLL发布了新的文献求助10
6秒前
Ethanyoyo0917完成签到,获得积分10
7秒前
7秒前
大气怜烟发布了新的文献求助10
7秒前
无极微光应助唯昭采纳,获得20
7秒前
7秒前
kong溪1002发布了新的文献求助10
7秒前
研友_ZrlaXL完成签到,获得积分10
8秒前
在水一方应助修狗儿采纳,获得10
8秒前
华仔应助双儿采纳,获得10
8秒前
李运发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
哈哈完成签到 ,获得积分10
9秒前
文耳东发布了新的文献求助10
9秒前
9秒前
hihi完成签到 ,获得积分10
9秒前
FL发布了新的文献求助30
10秒前
enen发布了新的文献求助10
10秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587388
求助须知:如何正确求助?哪些是违规求助? 4670503
关于积分的说明 14783142
捐赠科研通 4622601
什么是DOI,文献DOI怎么找? 2531265
邀请新用户注册赠送积分活动 1499954
关于科研通互助平台的介绍 1468066