Physics-driven deep-learning inversion with application to transient electromagnetics

可解释性 最大值和最小值 反问题 反演(地质) 计算机科学 数学优化 人工神经网络 算法 地质学 人工智能 数学 构造盆地 数学分析 古生物学
作者
Daniele Colombo,Erşan Türkoğlu,Weichang Li,Ernesto Sandoval‐Curiel,Diego Rovetta
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:86 (3): E209-E224 被引量:57
标识
DOI:10.1190/geo2020-0760.1
摘要

Machine learning, and specifically deep-learning (DL) techniques applied to geophysical inverse problems, is an attractive subject, which has promising potential and, at the same time, presents some challenges in practical implementation. Some obstacles relate to scarce knowledge of the searched geologic structures, a problem that can limit the interpretability and generalizability of the trained DL networks when applied to independent scenarios in real applications. Commonly used (physics-driven) least-squares optimization methods are very efficient local optimization techniques but require good starting models close to the correct solution to avoid local minima. We have developed a hybrid workflow that combines both approaches in a coupled physics-driven/DL inversion scheme. We exploit the benefits and characteristics of both inversion techniques to converge to solutions that typically outperform individual inversion results and bring the solution closer to the global minimum of a nonconvex inverse problem. The completely data-driven and self-feeding procedure relies on a coupling mechanism between the two inversion schemes taking the form of penalty functions applied to the model term. Predictions from the DL network are used to constrain the least-squares inversion, whereas the feedback loop from inversion to the DL scheme consists of the network retraining with partial results obtained from inversion. The self-feeding process tends to converge to a common agreeable solution, which is the result of two independent schemes with different mathematical formalisms and different objective functions on the data and model misfit. We determine that the hybrid procedure is converging to robust and high-resolution resistivity models when applied to the inversion of the synthetic and field transient electromagnetic data. Finally, we speculate that the procedure may be adopted to recast the way we solve inverse problems in several different disciplines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
4秒前
明越完成签到,获得积分10
5秒前
8秒前
Shan5完成签到,获得积分10
9秒前
有点怪完成签到 ,获得积分10
10秒前
张子捷应助shawn采纳,获得10
11秒前
xiongyuan完成签到,获得积分10
13秒前
14秒前
15秒前
脑洞疼应助渝安采纳,获得10
16秒前
飞翔的霸天哥应助轻青采纳,获得30
17秒前
18秒前
李健的小迷弟应助宇与鱼采纳,获得10
19秒前
19秒前
21秒前
知犯何逆完成签到,获得积分10
22秒前
22秒前
含蓄的惜梦完成签到 ,获得积分10
23秒前
elastin发布了新的文献求助10
24秒前
24秒前
24秒前
JJJ发布了新的文献求助10
25秒前
26秒前
长理物电强完成签到,获得积分10
26秒前
勤劳的飞鸟完成签到,获得积分20
28秒前
29秒前
渝安发布了新的文献求助10
29秒前
30秒前
31秒前
31秒前
万刈发布了新的文献求助10
31秒前
honey完成签到,获得积分10
31秒前
34秒前
无花果应助健壮的面包采纳,获得10
34秒前
34秒前
35秒前
七哒蹦发布了新的文献求助10
35秒前
35秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3082546
求助须知:如何正确求助?哪些是违规求助? 2735785
关于积分的说明 7538956
捐赠科研通 2385412
什么是DOI,文献DOI怎么找? 1264844
科研通“疑难数据库(出版商)”最低求助积分说明 612817
版权声明 597672