亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Physics-driven deep-learning inversion with application to transient electromagnetics

可解释性 最大值和最小值 反问题 反演(地质) 计算机科学 数学优化 人工神经网络 算法 地质学 人工智能 数学 构造盆地 数学分析 古生物学
作者
Daniele Colombo,Erşan Türkoğlu,Weichang Li,Ernesto Sandoval‐Curiel,Diego Rovetta
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:86 (3): E209-E224 被引量:57
标识
DOI:10.1190/geo2020-0760.1
摘要

Machine learning, and specifically deep-learning (DL) techniques applied to geophysical inverse problems, is an attractive subject, which has promising potential and, at the same time, presents some challenges in practical implementation. Some obstacles relate to scarce knowledge of the searched geologic structures, a problem that can limit the interpretability and generalizability of the trained DL networks when applied to independent scenarios in real applications. Commonly used (physics-driven) least-squares optimization methods are very efficient local optimization techniques but require good starting models close to the correct solution to avoid local minima. We have developed a hybrid workflow that combines both approaches in a coupled physics-driven/DL inversion scheme. We exploit the benefits and characteristics of both inversion techniques to converge to solutions that typically outperform individual inversion results and bring the solution closer to the global minimum of a nonconvex inverse problem. The completely data-driven and self-feeding procedure relies on a coupling mechanism between the two inversion schemes taking the form of penalty functions applied to the model term. Predictions from the DL network are used to constrain the least-squares inversion, whereas the feedback loop from inversion to the DL scheme consists of the network retraining with partial results obtained from inversion. The self-feeding process tends to converge to a common agreeable solution, which is the result of two independent schemes with different mathematical formalisms and different objective functions on the data and model misfit. We determine that the hybrid procedure is converging to robust and high-resolution resistivity models when applied to the inversion of the synthetic and field transient electromagnetic data. Finally, we speculate that the procedure may be adopted to recast the way we solve inverse problems in several different disciplines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LJJ完成签到 ,获得积分10
20秒前
26秒前
29秒前
量子星尘发布了新的文献求助10
37秒前
1分钟前
1分钟前
sfx发布了新的文献求助10
1分钟前
sfx完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
FashionBoy应助小梦采纳,获得10
1分钟前
2分钟前
6666666666完成签到 ,获得积分10
2分钟前
2分钟前
Owen应助bbdd2334采纳,获得10
2分钟前
2分钟前
爱宝乐宝福宝完成签到,获得积分10
2分钟前
ii完成签到 ,获得积分10
2分钟前
111111111完成签到,获得积分10
2分钟前
心灵美语兰完成签到 ,获得积分10
2分钟前
我是老大应助科研通管家采纳,获得10
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
善学以致用应助Perry采纳,获得10
4分钟前
4分钟前
bbdd2334发布了新的文献求助10
4分钟前
4分钟前
舒适踏歌发布了新的文献求助20
4分钟前
4分钟前
彭于晏应助bbdd2334采纳,获得10
4分钟前
JrPaleo101发布了新的文献求助50
5分钟前
5分钟前
5分钟前
小梦发布了新的文献求助10
5分钟前
5分钟前
ccyy完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957044
求助须知:如何正确求助?哪些是违规求助? 3503084
关于积分的说明 11111230
捐赠科研通 3234118
什么是DOI,文献DOI怎么找? 1787735
邀请新用户注册赠送积分活动 870762
科研通“疑难数据库(出版商)”最低求助积分说明 802264