Physics-driven deep-learning inversion with application to transient electromagnetics

可解释性 最大值和最小值 反问题 反演(地质) 计算机科学 数学优化 人工神经网络 算法 地质学 人工智能 数学 古生物学 数学分析 构造盆地
作者
Daniele Colombo,Erşan Türkoğlu,Weichang Li,Ernesto Sandoval‐Curiel,Diego Rovetta
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:86 (3): E209-E224 被引量:57
标识
DOI:10.1190/geo2020-0760.1
摘要

Machine learning, and specifically deep-learning (DL) techniques applied to geophysical inverse problems, is an attractive subject, which has promising potential and, at the same time, presents some challenges in practical implementation. Some obstacles relate to scarce knowledge of the searched geologic structures, a problem that can limit the interpretability and generalizability of the trained DL networks when applied to independent scenarios in real applications. Commonly used (physics-driven) least-squares optimization methods are very efficient local optimization techniques but require good starting models close to the correct solution to avoid local minima. We have developed a hybrid workflow that combines both approaches in a coupled physics-driven/DL inversion scheme. We exploit the benefits and characteristics of both inversion techniques to converge to solutions that typically outperform individual inversion results and bring the solution closer to the global minimum of a nonconvex inverse problem. The completely data-driven and self-feeding procedure relies on a coupling mechanism between the two inversion schemes taking the form of penalty functions applied to the model term. Predictions from the DL network are used to constrain the least-squares inversion, whereas the feedback loop from inversion to the DL scheme consists of the network retraining with partial results obtained from inversion. The self-feeding process tends to converge to a common agreeable solution, which is the result of two independent schemes with different mathematical formalisms and different objective functions on the data and model misfit. We determine that the hybrid procedure is converging to robust and high-resolution resistivity models when applied to the inversion of the synthetic and field transient electromagnetic data. Finally, we speculate that the procedure may be adopted to recast the way we solve inverse problems in several different disciplines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qiuqiu发布了新的文献求助30
刚刚
sinan发布了新的文献求助10
1秒前
1秒前
FashionBoy应助Hayward采纳,获得10
1秒前
1秒前
2秒前
Bob2发布了新的文献求助10
2秒前
gengsumin完成签到,获得积分10
2秒前
2秒前
2秒前
完美世界应助lw采纳,获得10
3秒前
Ayanami完成签到,获得积分10
3秒前
4秒前
4秒前
科目三应助殷昭慧采纳,获得10
5秒前
dicpaccn完成签到,获得积分10
5秒前
36456657应助bjyxszd采纳,获得10
6秒前
6秒前
宁学者发布了新的文献求助10
6秒前
ysxlybt2完成签到,获得积分10
6秒前
6秒前
bing发布了新的文献求助10
7秒前
qiuqiu完成签到,获得积分10
7秒前
牧海冬完成签到,获得积分10
7秒前
7秒前
arrebol完成签到,获得积分10
7秒前
清秋若月举报朱滴滴求助涉嫌违规
8秒前
极品女杀手完成签到,获得积分10
8秒前
8秒前
8秒前
酷炫素发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
9秒前
牧海冬发布了新的文献求助10
9秒前
平平完成签到,获得积分10
9秒前
东哥发布了新的文献求助10
9秒前
情怀应助健壮的怜烟采纳,获得21
10秒前
bkagyin应助淡然寒蕾采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
Time Matters: On Theory and Method 500
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559249
求助须知:如何正确求助?哪些是违规求助? 3133915
关于积分的说明 9404473
捐赠科研通 2834019
什么是DOI,文献DOI怎么找? 1557787
邀请新用户注册赠送积分活动 727686
科研通“疑难数据库(出版商)”最低求助积分说明 716399