Application of In Situ Raman and Fourier Transform Infrared Spectroelectrochemical Methods on the Electrode‐Electrolyte Interface for Lithium−Oxygen Batteries

傅里叶变换红外光谱 材料科学 电解质 电极 红外光谱学 电池(电) 化学 锂(药物) 拉曼光谱 分析化学(期刊) 红外线的 原位 化学工程 光学 物理化学 物理 工程类 内分泌学 功率(物理) 有机化学 医学 量子力学 色谱法
作者
Chunguang Chen,Mengyuan Song,Lingzhu Lu,Li-Juan Yue,Tao Huang,Aishui Yu
出处
期刊:Batteries & supercaps [Wiley]
卷期号:4 (6): 850-859 被引量:16
标识
DOI:10.1002/batt.202000283
摘要

Abstract The development of rechargeable lithium−oxygen (Li−O 2 ) batteries with high specific energy is essential to satisfy increasing energy consumption. It is critical to understand the dynamic process and detailed pathways during cell operation, which will allow us to control the reaction, suppress the formation of byproducts, and optimize battery performance. In situ vibrational spectroelectrochemical techniques, including in situ Raman spectroscopy and in situ Fourier Transform Infrared (FTIR) spectroscopy, are powerful analytical methods for the purposes of battery studies and are reviewed in this article. The two in situ techniques can acquire real‐time information of adsorbed species on the interface of the electrode, and reveal the reaction mechanism on the interface of the electrode/electrolyte in depth. In situ Raman technique mainly monitors intermediate species and products in Li−O 2 batteries. The applications of surface‐enhanced Raman spectroscopy (SERS) for Li−O 2 batteries are described in detail in the review. For the in situ FTIR technique, two commonly used in situ methods are introduced in Li−O 2 batteries, namely, subtractive normalized Fourier transform infrared spectroscopy (SNIFTIRS) and attenuated total reflection surface enhanced infrared absorption spectroscopy (ATR‐SEIRAS). The reaction mechanism and failure mechanism of the cell are discussed by using the in situ FTIR technique.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨雾发布了新的文献求助10
刚刚
daiyapeng完成签到,获得积分10
刚刚
ivy应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
NN应助科研通管家采纳,获得10
1秒前
36456657应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得30
1秒前
Hello应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
NN应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
2秒前
36456657应助科研通管家采纳,获得10
2秒前
NN应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
NN应助科研通管家采纳,获得10
2秒前
2秒前
赘婿应助科研通管家采纳,获得30
2秒前
2秒前
shouyu29应助科研通管家采纳,获得10
2秒前
2秒前
顾闭月发布了新的文献求助10
2秒前
2秒前
活力绮兰应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
3秒前
栀清完成签到,获得积分20
3秒前
小W爱吃梨完成签到,获得积分10
5秒前
5秒前
栀清发布了新的文献求助10
5秒前
zss完成签到 ,获得积分10
6秒前
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794