Is Investment in Data Analytics Always Profitable? The Case of Third‐Party‐Online‐Promotion Marketplace

盈利能力指数 佣金 业务 分析 晋升(国际象棋) 利润(经济学) 营销 产业组织 经济 计算机科学 财务 微观经济学 数据科学 政治学 政治 法学
作者
Zhe Zhang,Shivendu Shivendu,Peng Wang
出处
期刊:Production and Operations Management [Wiley]
卷期号:30 (7): 2321-2337 被引量:6
标识
DOI:10.1111/poms.13379
摘要

Studies show that merchants are heterogeneous in profitability from offering promotions on third‐party‐online‐promotion marketplaces who often charge a single commission rate. Using a data analytics system, a marketplace can classify merchants according to their heterogeneous characteristics and offer merchant‐type specific commission rates. In this study, we construct a game‐theoretic model consisting a marketplace with two types of merchants who have heterogeneous proportion of consumers who are informed about their offering. The types are merchants’ private information, but the marketplace can invest in data analytics capability to classify merchants as per their types with a probability. We study a signal‐based strategy, where the marketplace invests in data analytics capability and offers a specific commission rate to individual merchant based on the merchant‐type classification and compare it with a single‐rate strategy of offering one commission rate to all merchants. We show that the relative strength and weakness of the signal‐based strategy depend on the merchant type distribution and the investment cost of improving the classification accuracy rate. Interestingly, the marketplace can be better off with the single‐rate strategy when a merchant type dominates the market. Moreover, we show that the signal‐based strategy, can lead to an increase in profit for merchants and an increase in consumer surplus. This is so because the marketplace’s signal‐based strategy has a cascade effect on consumers through the merchant’s optimal discount rate strategy. We conclude by identifying the conditions for a win–win–win situation wherein investment in data analytics capabilities by the marketplace also benefits merchants and consumers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wang完成签到,获得积分10
刚刚
Strike完成签到,获得积分10
1秒前
1秒前
大模型应助圆脸妹妹采纳,获得10
1秒前
微微完成签到,获得积分10
2秒前
瓜了个瓜完成签到,获得积分10
2秒前
lily完成签到,获得积分10
3秒前
天天快乐应助flora采纳,获得10
3秒前
跳跃仙人掌完成签到 ,获得积分0
3秒前
3秒前
4秒前
ljys发布了新的文献求助10
5秒前
坏猫完成签到 ,获得积分10
5秒前
sea2023完成签到,获得积分10
5秒前
ruyi完成签到,获得积分10
7秒前
7秒前
乏善可陈发布了新的文献求助10
7秒前
狗蕾发布了新的文献求助10
8秒前
momo完成签到,获得积分10
8秒前
雨宫遥香完成签到 ,获得积分10
8秒前
burninhell完成签到,获得积分10
9秒前
9秒前
宁学者完成签到,获得积分10
9秒前
兔子完成签到 ,获得积分10
9秒前
jzy完成签到,获得积分10
10秒前
10秒前
威武天奇发布了新的文献求助10
12秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
Jasper应助科研通管家采纳,获得10
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
Lucas应助科研通管家采纳,获得10
13秒前
bkagyin应助科研通管家采纳,获得10
13秒前
wxyes发布了新的文献求助10
13秒前
周周应助科研通管家采纳,获得10
13秒前
13秒前
云汐儿应助科研通管家采纳,获得10
13秒前
13秒前
iNk应助科研通管家采纳,获得10
13秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134355
求助须知:如何正确求助?哪些是违规求助? 2785254
关于积分的说明 7770963
捐赠科研通 2440904
什么是DOI,文献DOI怎么找? 1297556
科研通“疑难数据库(出版商)”最低求助积分说明 624987
版权声明 600792