气候变化
热带
降水
地理
土地覆盖
纬度
全球变化
气候学
北半球
代表性浓度途径
气候模式
环境科学
自然地理学
土地利用
生态学
地质学
生物
大地测量学
气象学
作者
Navin Ramankutty,Jonathan A. Foley,John M. Norman,Kevin McSweeney
标识
DOI:10.1046/j.1466-822x.2002.00294.x
摘要
Abstract Aim This study makes quantitative global estimates of land suitability for cultivation based on climate and soil constraints. It evaluates further the sensitivity of croplands to any possible changes in climate and atmospheric CO 2 concentrations. Location The location is global, geographically explicit. Methods The methods used are spatial data synthesis and analysis and numerical modelling. Results There is a cropland ‘reserve’ of 120%, mainly in tropical South America and Africa. Our climate sensitivity analysis indicates that the southern provinces of Canada, north‐western and north‐central states of the United States, northern Europe, southern Former Soviet Union and the Manchurian plains of China are most sensitive to changes in temperature. The Great Plains region of the United States and north‐eastern China are most sensitive to changes in precipitation. The regions that are sensitive to precipitation change are also sensitive to changes in CO 2 , but the magnitude is small compared to the influence of direct climate change. We estimate that climate change, as simulated by global climate models, will expand cropland suitability by an additional 16%, mainly in the Northern Hemisphere high latitudes. However, the tropics (mainly Africa, northern South America, Mexico and Central America and Oceania) will experience a small decrease in suitability due to climate change. Main conclusions There is a large reserve of cultivable croplands, mainly in tropical South America and Africa. However, much of this land is under valuable forests or in protected areas. Furthermore, the tropical soils could potentially lose fertility very rapidly once the forest cover is removed. Regions that lie at the margins of temperature or precipitation limitation to cultivation are most sensitive to changes in climate and atmospheric CO 2 concentration. It is anticipated that climate change will result in an increase in cropland suitability in the Northern Hemisphere high latitudes (mainly in developed nations), while the tropics will lose suitability (mainly in developing nations).
科研通智能强力驱动
Strongly Powered by AbleSci AI