A modeling framework for potential induced degradation in PV modules

母线 降级(电信) 可靠性(半导体) 计算机科学 互连 堆栈(抽象数据类型) PID控制器 失效物理学 工作(物理) 功率(物理) 分层(地质) 可靠性工程 材料科学 机械工程 温度控制 电气工程 工程类 物理 古生物学 计算机网络 程序设计语言 俯冲 电信 量子力学 生物 构造学
作者
Peter Bermel,Reza Asadpour,Chao Zhou,Muhammad A. Alam
出处
期刊:Proceedings of SPIE 卷期号:9563: 95630C-95630C 被引量:3
标识
DOI:10.1117/12.2188813
摘要

Major sources of performance degradation and failure in glass-encapsulated PV modules include moisture-induced gridline corrosion, potential-induced degradation (PID) of the cell, and stress-induced busbar delamination. Recent studies have shown that PV modules operating in damp heat at -600 V are vulnerable to large amounts of degradation, potentially up to 90% of the original power output within 200 hours. To improve module reliability and restore power production in the presence of PID and other failure mechanisms, a fundamental rethinking of accelerated testing is needed. This in turn will require an improved understanding of technology choices made early in development that impact failures later. In this work, we present an integrated approach of modeling, characterization, and validation to address these problems. A hierarchical modeling framework will allows us to clarify the mechanisms of corrosion, PID, and delamination. We will employ a physics-based compact model of the cell, topology of the electrode interconnection, geometry of the packaging stack, and environmental operating conditions to predict the current, voltage, temperature, and stress distributions in PV modules correlated with the acceleration of specific degradation modes. A self-consistent solution will capture the essential complexity of the technology-specific acceleration of PID and other degradation mechanisms as a function of illumination, ambient temperature, and relative humidity. Initial results from our model include specific lifetime predictions suitable for direct comparison with indoor and outdoor experiments, which are qualitatively validated by prior work. This approach could play a significant role in developing novel accelerated lifetime tests.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助小朱采纳,获得10
刚刚
yan123完成签到,获得积分10
刚刚
上官若男应助欣喜代秋采纳,获得10
刚刚
Jasper应助千早爱音采纳,获得10
1秒前
2秒前
JamesPei应助浮生采纳,获得10
2秒前
zy发布了新的文献求助10
2秒前
orixero应助miaomiao采纳,获得10
3秒前
yan123发布了新的文献求助10
3秒前
xywang完成签到,获得积分20
4秒前
东方三问应助edtaa采纳,获得10
5秒前
5秒前
好困应助guantlv采纳,获得10
5秒前
Juan完成签到,获得积分10
7秒前
7秒前
苯妥英俊完成签到,获得积分10
8秒前
田様应助qinsu采纳,获得10
9秒前
9秒前
9秒前
laj完成签到,获得积分10
10秒前
文静菠萝完成签到,获得积分10
10秒前
chan完成签到,获得积分20
11秒前
情怀应助梅子酒采纳,获得10
11秒前
zy发布了新的文献求助10
12秒前
基尔霍夫完成签到,获得积分10
12秒前
12秒前
12秒前
yye完成签到,获得积分10
13秒前
14秒前
热心市民余先生完成签到,获得积分10
14秒前
14秒前
yyy发布了新的文献求助10
14秒前
温酒叙人生完成签到,获得积分20
15秒前
15秒前
16秒前
乐乐应助粉色采纳,获得10
16秒前
科目三应助白华苍松采纳,获得10
16秒前
无限的绮南完成签到,获得积分10
17秒前
万能图书馆应助赵博宇采纳,获得10
17秒前
文献快来发布了新的文献求助10
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144018
求助须知:如何正确求助?哪些是违规求助? 2795670
关于积分的说明 7815932
捐赠科研通 2451682
什么是DOI,文献DOI怎么找? 1304642
科研通“疑难数据库(出版商)”最低求助积分说明 627255
版权声明 601419