量化(信号处理)
控制理论(社会学)
输出反馈
上下界
反馈控制
二次方程
鲁棒控制
数学
线性系统
控制(管理)
线性控制系统
控制系统
国家(计算机科学)
计算机科学
控制工程
算法
工程类
人工智能
数学分析
几何学
电气工程
出处
期刊:IEEE Transactions on Automatic Control
[Institute of Electrical and Electronics Engineers]
日期:2005-11-01
卷期号:50 (11): 1698-1711
被引量:1507
标识
DOI:10.1109/tac.2005.858689
摘要
This paper studies a number of quantized feedback design problems for linear systems. We consider the case where quantizers are static (memoryless). The common aim of these design problems is to stabilize the given system or to achieve certain performance with the coarsest quantization density. Our main discovery is that the classical sector bound approach is nonconservative for studying these design problems. Consequently, we are able to convert many quantized feedback design problems to well-known robust control problems with sector bound uncertainties. In particular, we derive the coarsest quantization densities for stabilization for multiple-input-multiple-output systems in both state feedback and output feedback cases; and we also derive conditions for quantized feedback control for quadratic cost and H/sub /spl infin// performances.
科研通智能强力驱动
Strongly Powered by AbleSci AI