清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

The Statistical Analysis of Compositional Data

成分数据 协方差 单纯形 协方差矩阵 数学 三元图 维数之咒 参数统计 基质(化学分析) 协方差矩阵的估计 统计 计算机科学 组合数学 三元运算 化学 色谱法 程序设计语言
作者
Gregory F. Piepel,J. Aitchison
出处
期刊:Technometrics [Informa]
卷期号:30 (1): 120-120 被引量:3506
标识
DOI:10.2307/1270335
摘要

1 Compositional data: some challenging problems.- 1.1 Introduction.- 1.2 Geochemical compositions of rocks.- 1.3 Sediments at different depths.- 1.4 Ternary diagrams.- 1.5 Partial analyses and subcompositions.- 1.6 Supervisory behaviour.- 1.7 Household budget surveys.- 1.8 Steroid metabolite patterns in adults and children.- 1.9 Activity patterns of a statistician.- 1.10 Calibration of white-cell compositions.- 1.11 Fruit evaluation.- 1.12 Firework mixtures.- 1.13 Clam ecology.- 1.14 Bibliographic notes.- Problems.- 2 The simplex as sample space.- 2.1 Choice of sample space.- 2.2 Compositions and simplexes.- 2.3 Spaces, vectors, matrices.- 2.4 Bases and compositions.- 2.5 Subcompositions.- 2.6 Amalgamations.- 2.7 Partitions.- 2.8 Perturbations.- 2.9 Geometrical representations of compositional data.- 2.10 Bibliographic notes.- Problems.- 3 The special difficulties of compositional data analysis.- 3.1 Introduction.- 3.2 High dimensionality.- 3.3 Absence of an interpretable covariance structure.- 3.4 Difficulty of parametric modelling.- 3.5 The mixture variation difficulty.- 3.6 Bibliographic notes.- Problems.- 4 Covariance structure.- 4.1 Fundamentals.- 4.2 Specification of the covariance structure.- 4.3 The compositional variation array.- 4.4 Recovery of the compositional variation array from the crude mean vector and covariance matrix.- 4.5 Subcompositional analysis.- 4.6 Matrix specifications of covariance structures.- 4.7 Some important elementary matrices.- 4.8 Relationships between the matrix specifications.- 4.9 Estimated matrices for hongite compositions.- 4.10 Logratios and logcontrasts.- 4.11 Covariance structure of a basis.- 4.12 Commentary.- 4.13 Bibliographic notes.- Problems.- 5 Properties of matrix covariance specifications.- 5.1 Logratio notation.- 5.2 Logcontrast variances and covariances.- 5.3 Permutations.- 5.4 Properties of P and QP matrices.- 5.5 Permutation invariants involving ?.- 5.6 Covariance matrix inverses.- 5.7 Subcompositions.- 5.8 Equivalence of characteristics of ?, ?, ?.- 5.9 Logratio-uncorrelated compositions.- 5.10 Isotropic covariance structures.- 5.11 Bibliographic notes.- Problems.- 6 Logistic normal distributions on the simplex.- 6.1 Introduction.- 6.2 The additive logistic normal class.- 6.3 Density function.- 6.4 Moment properties.- 6.5 Composition of a lognormal basis.- 6.6 Class-preserving properties.- 6.7 Conditional subcompositional properties.- 6.8 Perturbation properties.- 6.9 A central limit theorem.- 6.10 A characterization by logcontrasts.- 6.11 Relationships with the Dirichlet class.- 6.12 Potential for statistical analysis.- 6.13 The multiplicative logistic normal class.- 6.14 Partitioned logistic normal classes.- 6.15 Some notation.- 6.16 Bibliographic notes.- Problems.- 7 Logratio analysis of compositions.- 7.1 Introduction.- 7.2 Estimation of ? and ?.- 7.3 Validation: tests of logistic normality.- 7.4 Hypothesis testing strategy and techniques.- 7.5 Testing hypotheses about ? and ?.- 7.6 Logratio linear modelling.- 7.7 Testing logratio linear hypotheses.- 7.8 Further aspects of logratio linear modelling.- 7.9 An application of logratio linear modelling.- 7.10 Predictive distributions, atypicality indices and outliers.- 7.11 Statistical discrimination.- 7.12 Conditional compositional modelling.- 7.13 Bibliographic notes.- Problems.- 8 Dimension-reducing techniques.- 8.1 Introduction.- 8.2 Crude principal component analysis.- 8.3 Logcontrast principal component analysis.- 8.4 Applications of logcontrast principal component analysis.- 8.5 Subcompositional analysis.- 8.6 Applications of subcompositional analysis.- 8.7 Canonical component analysis.- 8.8 Bibliographic notes.- Problems.- 9 Bases and compositions.- 9.1 Fundamentals.- 9.2 Covariance relationships.- 9.3 Principal and canonical component comparisons.- 9.4 Distributional relationships.- 9.5 Compositional invariance.- 9.6 An application to household budget analysis.- 9.7 An application to clinical biochemistry.- 9.8 Reappraisal of an early shape and size analysis.- 9.9 Bibliographic notes.- Problems.- 10 Subcompositions and partitions.- 10.1 Introduction.- 10.2 Complete subcompositional independence.- 10.3 Partitions of order 1.- 10.4 Ordered sequences of partitions.- 10.5 Caveat.- 10.6 Partitions of higher order.- 10.7 Bibliographic notes.- Problems.- 11 Irregular compositional data.- 11.1 Introduction.- 11.2 Modelling imprecision in compositions.- 11.3 Analysis of sources of imprecision.- 11.4 Imprecision and tests of independence.- 11.5 Rounded or trace zeros.- 11.6 Essential zeros.- 11.7 Missing components.- 11.8 Bibliographic notes.- Problems.- 12 Compositions in a covariate role.- 12.1 Introduction.- 12.2 Calibration.- 12.3 A before-and-after treatment problem.- 12.4 Experiments with mixtures.- 12.5 An application to firework mixtures.- 12.6 Classification from compositions.- 12.7 An application to geological classification.- 12.8 Bibliographic notes.- Problems.- 13 Further distributions on the simplex.- 13.1 Some generalizations of the Dirichlet class.- 13.2 Some generalizations of the logistic normal classes.- 13.3 Recapitulation.- 13.4 The Ad(?,B) class.- 13.5 Maximum likelihood estimation.- 13.6 Neutrality and partition independence.- 13.7 Subcompositional independence.- 13.8 A generalized lognormal gamma distribution with compositional in variance.- 13.9 Discussion.- 13.10 Bibliographic notes.- Problems.- 14 Miscellaneous problems.- 14.1 Introduction.- 14.2 Multi-way compositions.- 14.3 Multi-stage compositions.- 14.4 Multiple compositions.- 14.5 Kernel density estimation for compositional data.- 14.6 Compositional stochastic processes.- 14.7 Relation to Bayesian statistical analysis.- 14.8 Compositional and directional data.- Problems.- Appendices.- A Algebraic properties of elementary matrices.- B Bibliography.- C Computer software for compositional data analysis.- D Data sets.- Author index.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kouryoufu发布了新的文献求助10
2秒前
名侦探柯基完成签到 ,获得积分10
11秒前
大模型应助迷你的秋双采纳,获得10
11秒前
H t完成签到,获得积分10
15秒前
xiuxiuzhang完成签到 ,获得积分10
18秒前
20秒前
20秒前
24秒前
Java完成签到,获得积分10
27秒前
迷你的秋双完成签到,获得积分10
30秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
藤椒辣鱼应助科研通管家采纳,获得10
34秒前
科研通AI2S应助科研通管家采纳,获得10
35秒前
红茸茸羊完成签到 ,获得积分10
46秒前
大个应助恶恶么v采纳,获得10
58秒前
1分钟前
1分钟前
恶恶么v发布了新的文献求助10
1分钟前
9527完成签到,获得积分10
1分钟前
研友_08oa3n完成签到 ,获得积分10
1分钟前
zzgpku完成签到,获得积分0
1分钟前
Antonio完成签到 ,获得积分10
1分钟前
chinzz应助雪山飞龙采纳,获得10
1分钟前
ziyewutong完成签到,获得积分10
1分钟前
1分钟前
雪山飞龙完成签到,获得积分10
1分钟前
夕阳space发布了新的文献求助30
1分钟前
GQ完成签到,获得积分10
2分钟前
coolplex完成签到 ,获得积分10
2分钟前
2分钟前
夕阳space完成签到,获得积分10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
藤椒辣鱼应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
13完成签到 ,获得积分10
3分钟前
ceciiahanhan完成签到,获得积分20
3分钟前
Akim应助恶恶么v采纳,获得10
3分钟前
3分钟前
恶恶么v发布了新的文献求助10
3分钟前
王波完成签到 ,获得积分10
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Examining the relationship between working capital management and firm performance: a state-of-the-art literature review and visualisation analysis 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3445148
求助须知:如何正确求助?哪些是违规求助? 3041200
关于积分的说明 8984046
捐赠科研通 2729756
什么是DOI,文献DOI怎么找? 1497172
科研通“疑难数据库(出版商)”最低求助积分说明 692167
邀请新用户注册赠送积分活动 689714