生物
核糖核酸
雀麦花叶病毒
RNA依赖性RNA聚合酶
亚基因组mRNA
病毒学
分子生物学
花叶病毒
尼泊尔病毒
编码链
黄瓜花叶病毒
病毒
RNA聚合酶
烟草花叶病毒
植物病毒
遗传学
基因
作者
Hai-He Wang,Sek‐Man Wong
标识
DOI:10.1099/vir.0.79861-0
摘要
RNA-dependent RNA polymerase (RdRp) was solubilized from crude extracts of Hibiscus cannabinus infected by Hibiscus chlorotic ringspot virus (HCRSV), a member of the Carmoviridae. After treatment of the extracts with micrococcal nuclease to remove the endogenous templates, the full-length genomic RNA and the two subgenomic RNAs were efficiently synthesized by the partially purified RdRp complex in vitro. When the full-length RNAs of Potato virus X, Tobacco mosaic virus, Odontoglossum ringspot virus and Cucumber mosaic virus were used as templates, no detectable RNA was synthesized. Synthesis of HCRSV minus-strand RNA was shown to initiate opposite the 3'-terminal two C residues at the 3' end in vitro and in vivo. The CCC-3' terminal nucleotide sequence was optimal and nucleotide variations from CCC-3' diminished minus-strand synthesis. In addition, two putative stem-loops (SLs) located within the 3'-terminal 87 nt of HCRSV plus-strand RNA were also essential for minus-strand RNA synthesis. Deletion or disruption of the structure of these two SLs severely reduced or abolished RNA synthesis. HCRSV RNA in which the two SLs were replaced with the SLs of Turnip crinkle virus could replicate in kenaf protoplasts, indicating that functionally conserved structure, rather than nucleotide sequence, plays an important role in the minus-strand synthesis of HCRSV. Taken together, the specific sequence CCC at the 3' terminus and the two SLs structures located in the 3'UTR are essential for efficient minus-strand synthesis of HCRSV.
科研通智能强力驱动
Strongly Powered by AbleSci AI