Mathematical Modelling of Drug Transport and Uptake in a Realistic Model of Solid Tumour

药品 药物输送 药代动力学 药效学 细胞内 药理学 丸(消化) 细胞外 抗癌药 阿霉素 靶向给药 细胞外基质 医学 化学 癌症研究 化疗 内科学 生物化学 有机化学
作者
Wenbo Zhan,Wladyslaw Gedroyc,Xiao Yun Xu
出处
期刊:Protein and Peptide Letters [Bentham Science]
卷期号:21 (11): 1146-1156 被引量:20
标识
DOI:10.2174/0929866521666140807115629
摘要

Effective delivery of therapeutic agents to tumour cells is essential to the success of most cancer treatment therapies except for surgery. The transport of drug in solid tumours involves multiple biophysical and biochemical proc- esses which are strongly dependent on the physicochemical properties of the drug and biological properties of the tumour. Owing to the complexities involved, mathematical models are playing an increasingly important role in identifying the factors leading to inadequate drug delivery to tumours. In this study, a computational model is developed which incorpo- rates real tumour geometry reconstructed from magnetic resonance images, drug transport through the tumour vasculature and interstitium, as well as drug uptake by tumour cells. The effectiveness of anticancer therapy is evaluated based on the percentage of survival tumour cells by directly solving the pharmacodynamics equation using predicted intracellular drug concentrations. Computational simulations are performed for the delivery of doxorubicin through different administration modes and doses. Our predictions show that continuous infusion is far more effective than bolus injection in maintaining high levels of intracellular drug concentration, thereby increasing drug uptake by tumour cells. On the other hand, bolus injection leads to higher extracellular concentration in both tumour and normal tissues compared to continuous infusion, which is undesirable as high drug concentration in normal tissues may increase the risk of associated side effects. Keywords: Anticancer therapy, computational model, drug transport, MR image-based model, prostate tumour.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研狗完成签到,获得积分10
刚刚
挡住所有坏运气888完成签到,获得积分10
刚刚
万能图书馆应助misalia采纳,获得10
刚刚
1秒前
分风吹完成签到 ,获得积分10
1秒前
杜嘟嘟发布了新的文献求助10
2秒前
QinMengyao发布了新的文献求助10
3秒前
李繁蕊发布了新的文献求助10
4秒前
眼睛大的鑫磊完成签到,获得积分10
4秒前
雪白红紫完成签到,获得积分10
4秒前
5秒前
6秒前
6秒前
Fareth发布了新的文献求助10
6秒前
Air云完成签到,获得积分10
6秒前
PakhoPHD完成签到 ,获得积分10
6秒前
玉麒麟完成签到,获得积分0
7秒前
Angela完成签到,获得积分10
7秒前
希望天下0贩的0应助小吴采纳,获得10
7秒前
7秒前
lilac应助苹果煎饼采纳,获得10
8秒前
大模型应助百宝采纳,获得10
8秒前
怕黑砖头完成签到,获得积分10
9秒前
10秒前
10秒前
花玥鹿完成签到,获得积分10
10秒前
cybbbbbb完成签到,获得积分10
10秒前
咳咳完成签到,获得积分10
10秒前
11秒前
SciGPT应助眼睛大的鑫磊采纳,获得10
11秒前
11秒前
Fareth完成签到,获得积分10
11秒前
领导范儿应助故意的绿竹采纳,获得10
11秒前
11秒前
复杂谷蓝完成签到 ,获得积分10
11秒前
12秒前
迟大猫应助于某人采纳,获得10
12秒前
qingkong发布了新的文献求助10
13秒前
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740