Network pharmacology-based prediction of the active ingredients and potential targets of Chinese herbal Radix Curcumae formula for application to cardiovascular disease

传统医学 药理学 医学 活性成分 生药学 根(腹足类) 化学 生物活性 生物 生物化学 体外 植物
作者
Weiyang Tao,Xue Xu,Xia Wang,Bohui Li,Yonghua Wang,Yan Li,Ling Yang
出处
期刊:Journal of Ethnopharmacology [Elsevier]
卷期号:145 (1): 1-10 被引量:574
标识
DOI:10.1016/j.jep.2012.09.051
摘要

Cardiovascular and cerebrovascular diseases (CCVD), an abnormal function of the heart, brain or blood vessels, are the biggest cause of deaths worldwide. Traditional Chinese medicine (TCM) holds a great promise for preventing such diseases in an integrative and holistic way. However, its systems-level characterization of drug-target associations is still unknown.Here, we have constructed a computational approach by combining chemical predictors based on chemical structure, chemogenomics data linking compounds with pharmacological information, and a system biology functional data analysis and network reconstruction method.The pharmacological system generated 58 bioactive ingredients from the Chinese herbal Radix Curcumae formula, and predicted 32 potential targets related to the CCVD. The results indicates that Radix Curcumae share the most common targets with Fructus Gardeniae (15), while less common targets with Moschus and Borneolum (8 and 1, respectively). Further integrated network shows that Radix Curcumae represents the principal component for the prevention of CCVD, and other three medicines serve as adjuvant ones to assist the effects of the principal component, which together probably display synergistic actions.Our work successfully explains the mechanism of efficiency of Radix Curcumae formula for the prevention of CCVD, and meanwhile, predicts the potential targets of the Chinese medicines, which facilitates to elucidate the compatible mechanism of the complex prescription, i.e., "jun-chen-zuo-shi", and provides basis for an alternative approach to investigate novel TCM formula on the network pharmacology level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柴先生完成签到,获得积分10
刚刚
Magic发布了新的文献求助10
刚刚
刚刚
刚刚
量子星尘发布了新的文献求助10
1秒前
Zhao完成签到 ,获得积分10
1秒前
1秒前
2秒前
2秒前
追寻依风发布了新的文献求助10
2秒前
qwp发布了新的文献求助10
2秒前
看看发布了新的文献求助10
3秒前
3秒前
眯眯眼的裙子完成签到,获得积分10
5秒前
Lucia完成签到 ,获得积分10
5秒前
大盆完成签到,获得积分10
5秒前
开朗醉波发布了新的文献求助10
6秒前
6秒前
泡菜鱼oo完成签到,获得积分20
7秒前
7秒前
Muddle完成签到,获得积分10
7秒前
wacfpp完成签到,获得积分10
7秒前
8秒前
cindy发布了新的文献求助10
8秒前
1234发布了新的文献求助10
8秒前
疯大仙外向太清完成签到,获得积分10
8秒前
浮泷完成签到,获得积分10
10秒前
10秒前
英姑应助赵小美采纳,获得10
10秒前
10秒前
Muddle发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
柠檬不萌完成签到,获得积分10
11秒前
D追完成签到,获得积分20
11秒前
鱼王木木完成签到,获得积分10
12秒前
12秒前
完美世界应助519采纳,获得10
12秒前
angelinazh发布了新的文献求助10
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776553
求助须知:如何正确求助?哪些是违规求助? 5629807
关于积分的说明 15443193
捐赠科研通 4908648
什么是DOI,文献DOI怎么找? 2641367
邀请新用户注册赠送积分活动 1589320
关于科研通互助平台的介绍 1543933