Network pharmacology-based prediction of the active ingredients and potential targets of Chinese herbal Radix Curcumae formula for application to cardiovascular disease

传统医学 药理学 医学 活性成分 生药学 根(腹足类) 化学 生物活性 生物 生物化学 植物 体外
作者
Weiyang Tao,Xue Xu,Xia Wang,Bohui Li,Yonghua Wang,Yan Li,Ling Yang
出处
期刊:Journal of Ethnopharmacology [Elsevier]
卷期号:145 (1): 1-10 被引量:574
标识
DOI:10.1016/j.jep.2012.09.051
摘要

Cardiovascular and cerebrovascular diseases (CCVD), an abnormal function of the heart, brain or blood vessels, are the biggest cause of deaths worldwide. Traditional Chinese medicine (TCM) holds a great promise for preventing such diseases in an integrative and holistic way. However, its systems-level characterization of drug-target associations is still unknown.Here, we have constructed a computational approach by combining chemical predictors based on chemical structure, chemogenomics data linking compounds with pharmacological information, and a system biology functional data analysis and network reconstruction method.The pharmacological system generated 58 bioactive ingredients from the Chinese herbal Radix Curcumae formula, and predicted 32 potential targets related to the CCVD. The results indicates that Radix Curcumae share the most common targets with Fructus Gardeniae (15), while less common targets with Moschus and Borneolum (8 and 1, respectively). Further integrated network shows that Radix Curcumae represents the principal component for the prevention of CCVD, and other three medicines serve as adjuvant ones to assist the effects of the principal component, which together probably display synergistic actions.Our work successfully explains the mechanism of efficiency of Radix Curcumae formula for the prevention of CCVD, and meanwhile, predicts the potential targets of the Chinese medicines, which facilitates to elucidate the compatible mechanism of the complex prescription, i.e., "jun-chen-zuo-shi", and provides basis for an alternative approach to investigate novel TCM formula on the network pharmacology level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
充电宝应助科研通管家采纳,获得10
刚刚
传奇3应助科研通管家采纳,获得10
刚刚
Akim应助科研通管家采纳,获得10
刚刚
qqq发布了新的文献求助10
刚刚
丘比特应助科研通管家采纳,获得10
刚刚
刚刚
Owen应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
Mic应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
2秒前
Hello应助金博洋采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得30
2秒前
所所应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
xxfsx应助nmm1111采纳,获得10
2秒前
2秒前
orixero应助苏A尔采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425046
求助须知:如何正确求助?哪些是违规求助? 4539189
关于积分的说明 14166098
捐赠科研通 4456315
什么是DOI,文献DOI怎么找? 2444120
邀请新用户注册赠送积分活动 1435182
关于科研通互助平台的介绍 1412492