Network pharmacology-based prediction of the active ingredients and potential targets of Chinese herbal Radix Curcumae formula for application to cardiovascular disease

传统医学 药理学 医学 活性成分 生药学 根(腹足类) 化学 生物活性 生物 生物化学 植物 体外
作者
Weiyang Tao,Xue Xu,Xia Wang,Bohui Li,Yonghua Wang,Yan Li,Ling Yang
出处
期刊:Journal of Ethnopharmacology [Elsevier]
卷期号:145 (1): 1-10 被引量:574
标识
DOI:10.1016/j.jep.2012.09.051
摘要

Cardiovascular and cerebrovascular diseases (CCVD), an abnormal function of the heart, brain or blood vessels, are the biggest cause of deaths worldwide. Traditional Chinese medicine (TCM) holds a great promise for preventing such diseases in an integrative and holistic way. However, its systems-level characterization of drug-target associations is still unknown.Here, we have constructed a computational approach by combining chemical predictors based on chemical structure, chemogenomics data linking compounds with pharmacological information, and a system biology functional data analysis and network reconstruction method.The pharmacological system generated 58 bioactive ingredients from the Chinese herbal Radix Curcumae formula, and predicted 32 potential targets related to the CCVD. The results indicates that Radix Curcumae share the most common targets with Fructus Gardeniae (15), while less common targets with Moschus and Borneolum (8 and 1, respectively). Further integrated network shows that Radix Curcumae represents the principal component for the prevention of CCVD, and other three medicines serve as adjuvant ones to assist the effects of the principal component, which together probably display synergistic actions.Our work successfully explains the mechanism of efficiency of Radix Curcumae formula for the prevention of CCVD, and meanwhile, predicts the potential targets of the Chinese medicines, which facilitates to elucidate the compatible mechanism of the complex prescription, i.e., "jun-chen-zuo-shi", and provides basis for an alternative approach to investigate novel TCM formula on the network pharmacology level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lh完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
科研通AI6应助风中泰坦采纳,获得10
刚刚
1秒前
1秒前
林子昂发布了新的文献求助10
2秒前
WTL完成签到,获得积分10
2秒前
3秒前
CodeCraft应助dong采纳,获得10
3秒前
三十发布了新的文献求助10
3秒前
123发布了新的文献求助10
4秒前
LJM发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
七七发布了新的文献求助10
4秒前
善学以致用应助yzr采纳,获得10
4秒前
4秒前
4秒前
Vanessa发布了新的文献求助10
5秒前
领导范儿应助张雯雯采纳,获得10
6秒前
Owen应助frank采纳,获得10
6秒前
小粉红wow~~~完成签到,获得积分10
6秒前
浮游应助hyw采纳,获得10
6秒前
echo完成签到 ,获得积分10
6秒前
6秒前
6秒前
7秒前
哈哈哈哈完成签到,获得积分10
8秒前
8秒前
爆米花应助鸭鸭采纳,获得30
8秒前
CipherSage应助曾长石采纳,获得30
8秒前
无脚鸟发布了新的文献求助10
8秒前
WWK13完成签到,获得积分20
8秒前
8秒前
8秒前
QQLL发布了新的文献求助10
8秒前
安芳完成签到,获得积分10
8秒前
OMO完成签到,获得积分10
9秒前
张皓123发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624997
求助须知:如何正确求助?哪些是违规求助? 4710900
关于积分的说明 14952616
捐赠科研通 4778944
什么是DOI,文献DOI怎么找? 2553493
邀请新用户注册赠送积分活动 1515444
关于科研通互助平台的介绍 1475731