Network pharmacology-based prediction of the active ingredients and potential targets of Chinese herbal Radix Curcumae formula for application to cardiovascular disease

传统医学 药理学 医学 活性成分 生药学 根(腹足类) 化学 生物活性 生物 生物化学 体外 植物
作者
Weiyang Tao,Xue Xu,Xia Wang,Bohui Li,Yonghua Wang,Yan Li,Ling Yang
出处
期刊:Journal of Ethnopharmacology [Elsevier BV]
卷期号:145 (1): 1-10 被引量:560
标识
DOI:10.1016/j.jep.2012.09.051
摘要

Cardiovascular and cerebrovascular diseases (CCVD), an abnormal function of the heart, brain or blood vessels, are the biggest cause of deaths worldwide. Traditional Chinese medicine (TCM) holds a great promise for preventing such diseases in an integrative and holistic way. However, its systems-level characterization of drug-target associations is still unknown.Here, we have constructed a computational approach by combining chemical predictors based on chemical structure, chemogenomics data linking compounds with pharmacological information, and a system biology functional data analysis and network reconstruction method.The pharmacological system generated 58 bioactive ingredients from the Chinese herbal Radix Curcumae formula, and predicted 32 potential targets related to the CCVD. The results indicates that Radix Curcumae share the most common targets with Fructus Gardeniae (15), while less common targets with Moschus and Borneolum (8 and 1, respectively). Further integrated network shows that Radix Curcumae represents the principal component for the prevention of CCVD, and other three medicines serve as adjuvant ones to assist the effects of the principal component, which together probably display synergistic actions.Our work successfully explains the mechanism of efficiency of Radix Curcumae formula for the prevention of CCVD, and meanwhile, predicts the potential targets of the Chinese medicines, which facilitates to elucidate the compatible mechanism of the complex prescription, i.e., "jun-chen-zuo-shi", and provides basis for an alternative approach to investigate novel TCM formula on the network pharmacology level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
修辛发布了新的文献求助10
刚刚
羊蛋儿完成签到,获得积分10
刚刚
congenialboy发布了新的文献求助30
1秒前
2秒前
羊蛋儿发布了新的文献求助10
3秒前
3秒前
4秒前
zhq发布了新的文献求助10
4秒前
情怀应助Ayuyu采纳,获得10
6秒前
6秒前
YJ888发布了新的文献求助10
7秒前
王紫青完成签到,获得积分10
7秒前
672发布了新的文献求助10
8秒前
Agq完成签到,获得积分10
9秒前
彭于晏应助学术菜鸡123采纳,获得30
10秒前
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
Orange应助科研通管家采纳,获得10
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
11秒前
所所应助科研通管家采纳,获得10
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
11秒前
yizhiGao应助科研通管家采纳,获得10
11秒前
科目三应助科研通管家采纳,获得10
11秒前
11秒前
ding应助fei采纳,获得10
12秒前
落叶完成签到,获得积分10
13秒前
yydragen应助可爱无招采纳,获得50
14秒前
slx发布了新的文献求助10
15秒前
科研通AI2S应助机智的水风采纳,获得10
15秒前
叮当发布了新的文献求助10
15秒前
haha发布了新的文献求助50
17秒前
孙燕应助keyun采纳,获得10
18秒前
hjy完成签到 ,获得积分10
19秒前
CipherSage应助落叶采纳,获得10
22秒前
修辛发布了新的文献求助10
23秒前
24秒前
荣和完成签到,获得积分10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989550
求助须知:如何正确求助?哪些是违规求助? 3531774
关于积分的说明 11254747
捐赠科研通 3270278
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882125
科研通“疑难数据库(出版商)”最低求助积分说明 809176