已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Knowledge of lung cancer symptoms and risk factors in the UK: development of a measure and results from a population-based survey

医学 肺癌 度量(数据仓库) 人口 环境卫生 癌症 肿瘤科 内科学 数据挖掘 计算机科学
作者
Alice Simon,Dorota Juszczyk,Nina Smyth,Emily Power,Sara Hiom,Michael Peake,Jane Wardle
出处
期刊:Thorax [BMJ]
卷期号:67 (5): 426-432 被引量:93
标识
DOI:10.1136/thoraxjnl-2011-200898
摘要

Objectives

To develop and validate a Lung Cancer Awareness Measure (Lung CAM) and explore the demographical and social predictors of lung cancer awareness in the general population.

Methods study 1

Symptoms and risk factors for lung cancer were identified from the medical literature and health professional expertise in an iterative process. Test–retest reliability, internal reliability, item analyses, construct validity and sensitivity to changes in awareness of the Lung CAM were assessed in three samples (total N=191).

Results study 1

The Lung CAM demonstrated good internal (Cronbach9s α=0.88) and test–retest reliability (r=0.81, p<0.001). Validity was supported by lung cancer experts scoring higher than equally educated controls (t(106)=8.7, p<0.001), and volunteers randomised to read lung cancer information scoring higher than those reading a control leaflet (t(81)=3.66, p<0.001).

Methods study 2

A population-based sample of 1484 adults completed the Lung CAM in a face-to-face, computer-assisted interview.

Results study 2

Symptom awareness was low (average recall of one symptom) and there was little awareness of risk factors other than smoking. Familiarity with cancer, and being from a higher socioeconomic group, were associated with greater awareness.

Conclusions

Using a valid and reliable tool for assessing awareness showed the UK population to have low awareness of lung cancer symptoms and risk factors. Interventions to increase lung cancer awareness are needed to improve early detection behaviour.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
傻丢完成签到 ,获得积分10
2秒前
2秒前
风趣小蜜蜂完成签到 ,获得积分10
2秒前
慕青应助五音不全汪采纳,获得10
3秒前
归尘发布了新的文献求助10
5秒前
奕柯完成签到,获得积分10
6秒前
科研通AI6应助小甘采纳,获得30
6秒前
7秒前
bkagyin应助杭谷波采纳,获得10
7秒前
FashionBoy应助Jonathan采纳,获得10
7秒前
9秒前
云帆发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
孤独的以菱完成签到 ,获得积分10
13秒前
一只快乐的小比熊完成签到 ,获得积分10
13秒前
111发布了新的文献求助10
13秒前
4114发布了新的文献求助10
16秒前
wx发布了新的文献求助10
16秒前
17秒前
叮当完成签到,获得积分10
18秒前
huangfan完成签到,获得积分20
19秒前
Laraineww完成签到 ,获得积分10
20秒前
风清扬发布了新的文献求助10
20秒前
ILS发布了新的文献求助30
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
大模型应助科研通管家采纳,获得10
21秒前
科目三应助科研通管家采纳,获得10
21秒前
完美世界应助科研通管家采纳,获得10
21秒前
情怀应助科研通管家采纳,获得10
21秒前
FashionBoy应助科研通管家采纳,获得10
21秒前
CodeCraft应助科研通管家采纳,获得10
22秒前
LPPQBB应助科研通管家采纳,获得50
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
LPPQBB应助科研通管家采纳,获得50
22秒前
科目三应助科研通管家采纳,获得10
22秒前
CipherSage应助科研通管家采纳,获得30
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355997
求助须知:如何正确求助?哪些是违规求助? 4487796
关于积分的说明 13971120
捐赠科研通 4388602
什么是DOI,文献DOI怎么找? 2411155
邀请新用户注册赠送积分活动 1403696
关于科研通互助平台的介绍 1377356