Affinity Improvement of a VEGF Aptamer by in Silico Maturation for a Sensitive VEGF-Detection System

适体 化学 指数富集配体系统进化 生物信息学 亲和力成熟 离解常数 DNA 组合化学 计算生物学 分子生物学 生物化学 核糖核酸 生物 受体 基因
作者
Yoshihiko Nonaka,Wataru Yoshida,Koichi Abe,Stefano Ferri,Holger Schulze,Till T. Bachmann,Kazunori Ikebukuro
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:85 (2): 1132-1137 被引量:97
标识
DOI:10.1021/ac303023d
摘要

Systematic evolution of ligands by exponential enrichment (SELEX) is an efficient method to identify aptamers; however, it sometimes fails to identify aptamers that bind to their target with high affinity. Thus, post-SELEX optimization of aptamers is required to improve aptamer binding affinity. We developed in silico maturation based on a genetic algorithm(1) as an efficient mutagenesis method to improve aptamer binding affinity. In silico maturation was performed to improve a VEGF-binding DNA aptamer (VEap121). The VEap121 aptamer is considered to fold into a G-quadruplex structure and this structure may be important for VEGF recognition. Using in silico maturation, VEap121 was mutated with the exception of the guanine tracts that are considered to form the G-quartet. As a result, four aptamers were obtained that showed higher affinity compared with VEap121. The dissociation constant (Kd) of the most improved aptamer (3R02) was 300 pM. The affinity of 3R02 was 16-fold higher than that of VEap121. Moreover, a bivalent aptamer was constructed by connecting two identical 3R02s through a 10-mer thymine linker for further improvement of affinity. The bivalent aptamer (3R02 Bivalent) bound to VEGF with a Kd value of 30 pM. Finally, by constructing a VEGF-detection system using a VEGF antibody as the capture molecule and monovalent 3R02 as the detection molecule, a more sensitive assay was developed compared with the system using VEap121. These results indicate that in silico maturation could be an efficient method to improve aptamer affinity for construction of sensitive detection systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
所所应助AARON采纳,获得10
2秒前
刘1完成签到 ,获得积分10
3秒前
天蓝完成签到,获得积分10
4秒前
领导范儿应助王贤平采纳,获得10
5秒前
5秒前
岑中归月发布了新的文献求助10
5秒前
美好斓发布了新的文献求助10
5秒前
6秒前
7秒前
www完成签到 ,获得积分10
8秒前
Chenzhs发布了新的文献求助10
8秒前
隐形曼青应助医学小渣渣采纳,获得10
9秒前
摸俞发布了新的文献求助10
9秒前
默默的恶天完成签到,获得积分20
9秒前
10秒前
Ginger发布了新的文献求助20
10秒前
在水一方应助不加糖采纳,获得10
10秒前
威武的夜绿完成签到,获得积分10
12秒前
夫列杰尼发布了新的文献求助10
12秒前
爱睡觉的森森完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
喝儿何发布了新的文献求助10
16秒前
17秒前
17秒前
17秒前
19秒前
朱珏虹完成签到,获得积分10
20秒前
yuki发布了新的文献求助10
22秒前
夫列杰尼完成签到,获得积分10
22秒前
22秒前
梨花雨凉完成签到,获得积分10
23秒前
王贤平发布了新的文献求助10
23秒前
kevindm完成签到,获得积分10
24秒前
24秒前
S1998发布了新的文献求助20
24秒前
24秒前
研友_VZG7GZ应助bewh采纳,获得10
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684791
求助须知:如何正确求助?哪些是违规求助? 5038954
关于积分的说明 15185395
捐赠科研通 4843938
什么是DOI,文献DOI怎么找? 2597034
邀请新用户注册赠送积分活动 1549618
关于科研通互助平台的介绍 1508109