海马结构
内分泌学
内科学
有氧运动
未折叠蛋白反应
内质网
海马体
脑源性神经营养因子
高脂血症
神经营养因子
医学
生物
细胞生物学
受体
糖尿病
作者
Ming Cai,Hong Wang,Jingjing Li,Yunli Zhang,Lei Xin,Feng Li,Shujie Lou
标识
DOI:10.1016/j.bbi.2016.05.010
摘要
High fat diet (HFD)-induced obesity has been shown to reduce the levels of neuronal plasticity-related proteins, specifically brain-derived neurotrophic factor (BDNF) and synaptophysin (SYN), in the hippocampus. However, the underlying mechanisms are not fully clear. Endoplasmic reticulum stress (ERS) has been reported to play a key role in regulating gene expression and protein production by affecting stress signaling pathways and ER functions of protein folding and post-translational modification in peripheral tissues of obese rodent models. Additionally, HFD that is associated with hyperglycemia could induce hippocampal ERS, thus impairing insulin signaling and cognitive health in HFD mice. One goal of this study was to determine whether hyperglycemia and hyperlipidemia could cause hippocampal ERS in HFD-induced obese SD rats, and explore the potential mechanisms of ERS regulating hippocampal BDNF and SYN proteins production. Additionally, although regular aerobic exercise could reduce central inflammation and elevate hippocampal BDNF and SYN levels in obese rats, the regulated mechanisms are poorly understood. Nrf2-HO-1 pathways play roles in anti-ERS, anti-inflammation and anti-apoptosis in peripheral tissues. Therefore, the other goal of this study was to determine whether aerobic exercise could activate Nrf2-HO-1 in hippocampus to alleviate obesity-induced hippocampal ERS, which would lead to increased BDNF and SYN levels. Male SD rats were fed on HFD for 8 weeks to establish the obese model. Then, 8 weeks of aerobic exercise treadmill intervention was arranged for the obese rats. Results showed that HFD-induced obesity caused hyperglycemia and hyperlipidemia, and significantly promoted hippocampal glucose transporter 3 (GLUT3) and fatty acid transport protein 1 (FATP1) protein expression. These results were associated with the activation of hippocampal ERS and ERS-mediated apoptosis. At the same time, we found that excessive hippocampal ERS not only significantly decreased proBDNF—the precursor of mature BDNF, but also attenuated p38/ERK-CREB signaling pathways and activated NLRP3-IL-1β pathways in obese rats. These results were associated with reduced BDNF and SYN protein production. However, these adverse changes were obviously reversed by aerobic exercise intervention through activating the Nrf2-HO-1 pathways. These results suggest that dietary obesity could induce hippocampal ERS in male SD rats, and excessive hippocampal ERS plays a critical role in decreasing the levels of BDNF and SYN. Moreover, aerobic exercise could activate hippocampal Nrf2 and HO-1 to relieve ERS and heighten BDNF and SYN production in obese rats.
科研通智能强力驱动
Strongly Powered by AbleSci AI