SIRT3
安普克
骨骼肌
内分泌学
内科学
氧化应激
AMP活化蛋白激酶
蛋白激酶A
超氧化物歧化酶
化学
生物
锡尔图因
磷酸化
医学
生物化学
酶
NAD+激酶
作者
Yue Guan,Zijian Cui,Bei Sun,Liping Han,Chunjun Li,Liming Chen
标识
DOI:10.3892/ijmm.2016.2549
摘要
Oxidative stress plays a key role in the pathogenesis of diabetic myopathy. Celastrol provides a wide range of health benefits, including antioxidant, anti-inflammatory and antitumor effects. We hypothesized that celastrol may exert an antioxidant effect in the skeletal muscle of diabetic rats. In the present study, MnSOD activity was determined by spectrophotometry. The protein levels were evaluated by western blot analysis and mRNA content was quantified by RT‑qPCR. We firstly found that the levels of AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor coactivator 1α (PGC1α), silent mating-type information regulation 2 homolog 3 (Sirt3) and manganese superoxide dismutase (MnSOD) were all decreased in the skeletal muscle of diabetic patients. Male rats with diabetes were also treated with the vehicle or with celastrol at 1, 3 and 6 mg/kg/day for 8 weeks. The administration of celastrol at 3 and 6 mg/kg attenuated the deterioration of skeletal muscle, as shown by histological analysis, decreased the malondialdehyde (MDA) level and increased the glutathione (GSH) level assayed by enzyme-linked immunosorbent assay (ELISA) method. It also enhanced the enzyme activity and increased the expression of MnSOD, and increased the AMPK phosphorylation level, as well as PGC1α and Sirt3 expression. The findings of our study suggest that the expression of AMPK, PGC1α, Sirt3 and MnSOD are decreased in the skeletal muscle of diabetic patients. Celastrol exerted antioxidant effects on skeletal muscle partly by regulating the AMPK-PGC1α-Sirt3 signaling pathway.
科研通智能强力驱动
Strongly Powered by AbleSci AI