Variable-Fidelity Aerodynamic Design Using Gradient-Enhanced Kriging Surrogate Model with Regression

克里金 替代模型 计算机科学 变量(数学) 空气动力学 回归分析 功能(生物学) 数学优化 忠诚 计算流体力学 工程设计过程 数学 机器学习 工程类 航空航天工程 机械工程 生物 进化生物学 电信 数学分析
作者
Young Min Jo,Seongim Choi
出处
期刊:52nd Aerospace Sciences Meeting 被引量:14
标识
DOI:10.2514/6.2014-0900
摘要

The purpose of the current work is to develop efficient and yet accurate design optimization framework using variable-fidelity aerodynamic analysis. The basic idea of the variable-fidelity method is to maximize the efficiency of the analysis while maintaining the accuracy of the high-fidelity analysis. It performs a small number of high-fidelity analysis only when is needed for the function evaluations which are not accurate by lower-fidelity analysis. To explore a large design space with relatively many design variables, an efficient global optimization (EGO) is selected. However, the number of function evaluations for the global search process is often too expensive to directly carry out aerodynamic analysis using computational fluid dynamics (CFD). The Kriging surrogate model is introduced as an efficient alternative. To facilitate the variable-fidelity analysis, a corresponding variablefidelity Kriging model is developed. Gradient data are directly utilized to improve the accuracy of the Kriging model and reduces considerably the total number of function evaluations. The variable-fidelity and gradient-enhanced Kriging model is constructed and regression effect is also taken into account to mitigate the errors from the low-fidelity analysis to better predict the trend of the function of interest. The validity of the proposed Kriging model is validated for the analytic function with varying number of samples. Finally, practical design applications of both two-dimensional RAE2822 airfoil is carried out using the proposed surrogate model-based EGO design framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助lavande采纳,获得10
刚刚
QQWQEQRQ完成签到,获得积分10
刚刚
xiaoGuo完成签到,获得积分10
2秒前
吕敬瑶发布了新的文献求助10
2秒前
2秒前
3秒前
领导范儿应助zrl采纳,获得10
3秒前
俱乐部完成签到,获得积分10
3秒前
Orange应助包容的奇异果采纳,获得10
4秒前
茉莉是个饱饱完成签到,获得积分10
5秒前
FashionBoy应助不吃了采纳,获得10
6秒前
Ice完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
吕敬瑶完成签到,获得积分10
8秒前
9秒前
stone完成签到,获得积分10
9秒前
chinjaneking发布了新的文献求助10
11秒前
11秒前
11秒前
华仔应助yxc采纳,获得10
11秒前
12秒前
Hello应助YangLi采纳,获得10
12秒前
SciGPT应助yun采纳,获得10
12秒前
YS发布了新的文献求助10
15秒前
16秒前
16秒前
17秒前
思源应助Mc_Fan采纳,获得10
17秒前
zbm完成签到 ,获得积分10
17秒前
沉默的钵钵鸡完成签到,获得积分10
17秒前
19秒前
21秒前
甜心辣妹关注了科研通微信公众号
21秒前
red发布了新的文献求助10
22秒前
乐乐应助科学家采纳,获得10
22秒前
量子星尘发布了新的文献求助10
22秒前
不吃了发布了新的文献求助10
23秒前
向上的小马完成签到,获得积分10
24秒前
24秒前
yun发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646490
求助须知:如何正确求助?哪些是违规求助? 4771445
关于积分的说明 15035283
捐赠科研通 4805288
什么是DOI,文献DOI怎么找? 2569581
邀请新用户注册赠送积分活动 1526573
关于科研通互助平台的介绍 1485858