随机优势
谨慎
损失厌恶
前景理论
一般化
参数统计
优势(遗传学)
风险厌恶(心理学)
计量经济学
数理经济学
经济
下行风险
数学
计算机科学
期望效用假设
微观经济学
统计
金融经济学
文件夹
哲学
化学
数学分析
基因
生物化学
神学
作者
Dongmei Guo,Yi Hu,Shouyang Wang,Lin Zhao
标识
DOI:10.1016/j.insmatheco.2016.05.003
摘要
This paper develops a stochastic dominance rule for the reference-dependent utility theory proposed by Kőszegi and Rabin (2007). The new ordering captures the effects of loss aversion and can be used as a semi-parametric approach in the comparison of risks with reference points. It is analytically amenable and possesses a variety of intuitively appealing properties, including the abilities to identify both "increase in risk" and "increase in downside risk", to resolve the Allais-type anomalies, to capture the violation of translational invariance and scaling invariance, and to accommodate the endowment effect for risk. The generalization to third-order dominance reveals that loss aversion can either reinforce or weaken prudence, depending on the location of the reference point. Potential applications of the new ordering in financial contexts are briefly discussed.
科研通智能强力驱动
Strongly Powered by AbleSci AI