Evaluating dietary patterns

结果(博弈论) 选择(遗传算法) 疾病 营养流行病学 秩(图论) 统计 先验与后验 计量经济学 统计假设检验 回归分析 回归 流行病学 计算机科学 医学 数学 机器学习 病理 数理经济学 哲学 组合数学 认识论
作者
Cornelia Weikert,Matthias B. Schulze
出处
期刊:Current Opinion in Clinical Nutrition and Metabolic Care [Ovid Technologies (Wolters Kluwer)]
卷期号:19 (5): 341-346 被引量:86
标识
DOI:10.1097/mco.0000000000000308
摘要

The purpose of review is to present methodological issues as well as most relevant recent developments on the application of a statistical method to derive dietary patterns: reduced rank regression (RRR). RRR can be used efficiently in nutritional epidemiology to identify dietary patterns associated with selected response variables that have known relations with a disease outcome of interest. This has the advantage of building on a priori knowledge of biological relations, by including plausible intermediates between diet and the outcome of interest.This statistical method has been applied first in nutritional epidemiology about 1 decade ago. Since then, more than 60 publications were published applying the RRR. This method is considerably dependent on an adequate selection of response variables. These response sets were most often a combination of nutrients or of selected endogenous biomarkers. But also variables of intermediate clinical phenotype or contaminants were selected. However, applying this method, several methodological issues, such as, for example, selection of responses, simplification, and validation of the derived pattern should be taken into account.RRR is a modern statistical method to derive dietary patterns that can be used to test specific hypothesis on pathways from diet to development of a disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助巴拉芭芭拉采纳,获得10
刚刚
汉堡包应助机智的誉采纳,获得10
刚刚
HGFJGK完成签到 ,获得积分10
刚刚
刚刚
李健应助壁上同年采纳,获得10
1秒前
explorer完成签到,获得积分10
1秒前
Owen应助无情的可愁采纳,获得10
1秒前
1秒前
1秒前
xiongying完成签到,获得积分10
3秒前
俏皮白云完成签到 ,获得积分10
3秒前
小马甲应助朴实初夏采纳,获得10
4秒前
Abi发布了新的文献求助10
4秒前
嘿嘿嘿发布了新的文献求助10
5秒前
PENG应助白云朵儿采纳,获得10
5秒前
铁妹完成签到,获得积分10
5秒前
zhangyuheng完成签到,获得积分10
6秒前
6秒前
在水一方应助小杨采纳,获得10
6秒前
melon发布了新的文献求助10
6秒前
脑洞疼应助布丁果冻采纳,获得30
7秒前
7秒前
8秒前
聪慧的月饼完成签到,获得积分10
8秒前
JamesPei应助echo采纳,获得10
8秒前
8秒前
科研通AI5应助着急的万声采纳,获得10
8秒前
酷波er应助一点采纳,获得10
8秒前
9秒前
迷路凝旋发布了新的文献求助10
10秒前
冷静剑成发布了新的文献求助10
11秒前
12秒前
12秒前
嘿嘿嘿完成签到,获得积分10
13秒前
优美的唇彩完成签到,获得积分20
13秒前
13秒前
肥瑞发布了新的文献求助20
13秒前
媛宝发布了新的文献求助10
14秒前
烟花应助乌兰巴托没有海采纳,获得10
15秒前
赵豆豆完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3514919
求助须知:如何正确求助?哪些是违规求助? 3097284
关于积分的说明 9234961
捐赠科研通 2792241
什么是DOI,文献DOI怎么找? 1532370
邀请新用户注册赠送积分活动 712002
科研通“疑难数据库(出版商)”最低求助积分说明 707071