Learning Granularity-Unified Representations for Text-to-Image Person Re-identification

粒度 计算机科学 模态(人机交互) 模式 统一 情态动词 人工智能 特征(语言学) 鉴定(生物学) 自然语言处理 机器学习 模式识别(心理学) 情报检索 程序设计语言 植物 生物 社会科学 语言学 化学 哲学 社会学 高分子化学
作者
Zhiyin Shao,Xinyu Zhang,Meng Fang,Zhifeng Lin,Jian Wang,Changxing Ding
标识
DOI:10.1145/3503161.3548028
摘要

Text-to-image person re-identification (ReID) aims to search for pedestrian images of an interested identity via textual descriptions. It is challenging due to both rich intra-modal variations and significant inter-modal gaps. Existing works usually ignore the difference in feature granularity between the two modalities, i.e., the visual features are usually fine-grained while textual features are coarse, which is mainly responsible for the large inter-modal gaps. In this paper, we propose an end-to-end framework based on transformers to learn granularity-unified representations for both modalities, denoted as LGUR. LGUR framework contains two modules: a Dictionary-based Granularity Alignment (DGA) module and a Prototype-based Granularity Unification (PGU) module. In DGA, in order to align the granularities of two modalities, we introduce a Multi-modality Shared Dictionary (MSD) to reconstruct both visual and textual features. Besides, DGA has two important factors, i.e., the cross-modality guidance and the foreground-centric reconstruction, to facilitate the optimization of MSD. In PGU, we adopt a set of shared and learnable prototypes as the queries to extract diverse and semantically aligned features for both modalities in the granularity-unified feature space, which further promotes the ReID performance. Comprehensive experiments show that our LGUR consistently outperforms state-of-the-arts by large margins on both CUHK-PEDES and ICFG-PEDES datasets. Code will be released at https://github.com/ZhiyinShao-H/LGUR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
张子烜完成签到,获得积分10
1秒前
JamesPei应助云深不知处采纳,获得10
1秒前
浮游应助康K采纳,获得10
1秒前
freya发布了新的文献求助30
2秒前
臭小子发布了新的文献求助10
2秒前
打打应助我爱学习采纳,获得10
2秒前
2秒前
3秒前
FashionBoy应助excellent采纳,获得10
3秒前
lxm完成签到,获得积分20
3秒前
ACE发布了新的文献求助10
3秒前
4秒前
LIUDEHUA发布了新的文献求助10
4秒前
希望天下0贩的0应助zuolan采纳,获得10
4秒前
保奔发布了新的文献求助30
5秒前
5秒前
5秒前
Hibiscus95完成签到,获得积分10
5秒前
5秒前
CodeCraft应助instant采纳,获得10
5秒前
Mayday完成签到,获得积分10
6秒前
6秒前
科研通AI6应助hbhbj采纳,获得10
6秒前
葫芦娃发布了新的社区帖子
7秒前
7秒前
臭小子完成签到,获得积分10
7秒前
彬子发布了新的文献求助10
8秒前
8秒前
8秒前
好好读书完成签到,获得积分10
8秒前
迷路的帽子完成签到,获得积分10
9秒前
poem发布了新的文献求助10
9秒前
15169928657完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5435065
求助须知:如何正确求助?哪些是违规求助? 4547267
关于积分的说明 14207311
捐赠科研通 4467347
什么是DOI,文献DOI怎么找? 2448520
邀请新用户注册赠送积分活动 1439497
关于科研通互助平台的介绍 1416178