Learning Granularity-Unified Representations for Text-to-Image Person Re-identification

粒度 计算机科学 模态(人机交互) 模式 统一 情态动词 人工智能 特征(语言学) 鉴定(生物学) 自然语言处理 机器学习 模式识别(心理学) 情报检索 程序设计语言 植物 生物 社会科学 语言学 化学 哲学 社会学 高分子化学
作者
Zhiyin Shao,Xinyu Zhang,Meng Fang,Zhifeng Lin,Jian Wang,Changxing Ding
标识
DOI:10.1145/3503161.3548028
摘要

Text-to-image person re-identification (ReID) aims to search for pedestrian images of an interested identity via textual descriptions. It is challenging due to both rich intra-modal variations and significant inter-modal gaps. Existing works usually ignore the difference in feature granularity between the two modalities, i.e., the visual features are usually fine-grained while textual features are coarse, which is mainly responsible for the large inter-modal gaps. In this paper, we propose an end-to-end framework based on transformers to learn granularity-unified representations for both modalities, denoted as LGUR. LGUR framework contains two modules: a Dictionary-based Granularity Alignment (DGA) module and a Prototype-based Granularity Unification (PGU) module. In DGA, in order to align the granularities of two modalities, we introduce a Multi-modality Shared Dictionary (MSD) to reconstruct both visual and textual features. Besides, DGA has two important factors, i.e., the cross-modality guidance and the foreground-centric reconstruction, to facilitate the optimization of MSD. In PGU, we adopt a set of shared and learnable prototypes as the queries to extract diverse and semantically aligned features for both modalities in the granularity-unified feature space, which further promotes the ReID performance. Comprehensive experiments show that our LGUR consistently outperforms state-of-the-arts by large margins on both CUHK-PEDES and ICFG-PEDES datasets. Code will be released at https://github.com/ZhiyinShao-H/LGUR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
我是老大应助科研通管家采纳,获得10
刚刚
Akim应助科研通管家采纳,获得10
刚刚
不过尔尔发布了新的文献求助10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
1秒前
wanci应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
mufeixue完成签到,获得积分10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
2秒前
简单的乐驹应助科研通管家采纳,获得150
2秒前
2秒前
2秒前
传奇3应助科研通管家采纳,获得30
2秒前
bai发布了新的文献求助10
2秒前
Return应助科研通管家采纳,获得10
2秒前
Qingyong21应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
4秒前
李白完成签到,获得积分10
6秒前
风吹阔叶发布了新的文献求助30
6秒前
6秒前
7秒前
qing发布了新的文献求助30
7秒前
隐形小鸽子完成签到,获得积分20
7秒前
7秒前
文艺的青旋完成签到 ,获得积分10
8秒前
善学以致用应助sunshine采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
大模型应助mao采纳,获得10
9秒前
sterben完成签到,获得积分10
11秒前
安雯完成签到 ,获得积分10
11秒前
xiaokezhang发布了新的文献求助10
13秒前
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049