Attention‐based Deep Learning for the Preoperative Differentiation of Axillary Lymph Node Metastasis in Breast Cancer on DCE‐MRI

乳腺癌 医学 乳房磁振造影 转移 癌症 列线图 放射科 淋巴结 腋窝淋巴结 肿瘤科 核医学 内科学 乳腺摄影术
作者
Jing Gao,Xin Zhong,Wenjuan Li,Qin Li,Huafei Shao,Zhongyi Wang,Yi Dai,Heng Ma,Ying‐Hong Shi,Han Zhang,Shaofeng Duan,Kun Zhang,Ping Yang,Feng Zhao,Haicheng Zhang,Han Zhang,Ning Mao
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:57 (6): 1842-1853 被引量:17
标识
DOI:10.1002/jmri.28464
摘要

Previous studies have explored the potential on radiomics features of primary breast cancer tumor to identify axillary lymph node (ALN) metastasis. However, the value of deep learning (DL) to identify ALN metastasis remains unclear.To investigate the potential of the proposed attention-based DL model for the preoperative differentiation of ALN metastasis in breast cancer on dynamic contrast-enhanced MRI (DCE-MRI).Retrospective.A total of 941 breast cancer patients who underwent DCE-MRI before surgery were included in the training (742 patients), internal test (83 patients), and external test (116 patients) cohorts.A 3.0 T MR scanner, DCE-MRI sequence.A DL model containing a 3D deep residual network (ResNet) architecture and a convolutional block attention module, named RCNet, was proposed for ALN metastasis identification. Three RCNet models were established based on the tumor, ALN, and combined tumor-ALN regions on the images. The performance of these models was compared with ResNet models, radiomics models, the Memorial Sloan-Kettering Cancer Center (MSKCC) model, and three radiologists (W.L., H.S., and F. L.).Dice similarity coefficient for breast tumor and ALN segmentation. Accuracy, sensitivity, specificity, intercorrelation and intracorrelation coefficients, area under the curve (AUC), and Delong test for ALN classification.The optimal RCNet model, that is, RCNet-tumor+ALN , achieved an AUC of 0.907, an accuracy of 0.831, a sensitivity of 0.824, and a specificity of 0.837 in the internal test cohort, as well as an AUC of 0.852, an accuracy of 0.828, a sensitivity of 0.792, and a specificity of 0.853 in the external test cohort. Additionally, with the assistance of RCNet-tumor+ALN , the radiologists' performance was improved (external test cohort, P < 0.05).DCE-MRI-based RCNet model could provide a noninvasive auxiliary tool to identify ALN metastasis preoperatively in breast cancer, which may assist radiologists in conducting more accurate evaluation of ALN status.3 TECHNICAL EFFICACY: Stage 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助孤巷的猫采纳,获得10
1秒前
jiangjiang完成签到,获得积分10
1秒前
2秒前
毛豆应助xy820采纳,获得10
3秒前
希望天下0贩的0应助哒哒采纳,获得10
4秒前
5秒前
Hello应助jiangjiang采纳,获得10
5秒前
啛啛喳喳发布了新的文献求助10
6秒前
852应助自由的青烟采纳,获得10
9秒前
耶布达发布了新的文献求助30
10秒前
小木木完成签到,获得积分10
11秒前
毛豆应助丹丹采纳,获得10
13秒前
17秒前
18秒前
小潘完成签到,获得积分10
19秒前
20秒前
完美世界应助晨昏采纳,获得10
21秒前
21秒前
22秒前
22秒前
22秒前
26秒前
27秒前
美好斓应助king_counter采纳,获得100
28秒前
顾涵山发布了新的文献求助20
29秒前
深情安青应助温婉的水绿采纳,获得10
29秒前
稳重发布了新的文献求助10
30秒前
Chemistry发布了新的文献求助10
31秒前
西卡发布了新的文献求助10
31秒前
lensray发布了新的文献求助10
31秒前
陈小鬼完成签到 ,获得积分10
32秒前
耶布达完成签到 ,获得积分10
32秒前
34秒前
37秒前
我一进来就看到常威在打来福完成签到,获得积分10
37秒前
Serena发布了新的文献求助10
38秒前
科研通AI2S应助西卡采纳,获得10
39秒前
40秒前
king_counter给king_counter的求助进行了留言
40秒前
并不瑶远完成签到 ,获得积分10
41秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
New China Forges Ahead: Important Documents of the Third Session of the First National Committee of the Chinese People's Political Consultative Conference 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3056190
求助须知:如何正确求助?哪些是违规求助? 2712779
关于积分的说明 7433034
捐赠科研通 2357761
什么是DOI,文献DOI怎么找? 1249040
科研通“疑难数据库(出版商)”最低求助积分说明 606843
版权声明 596195