已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Attention‐based Deep Learning for the Preoperative Differentiation of Axillary Lymph Node Metastasis in Breast Cancer on DCE‐MRI

乳腺癌 医学 乳房磁振造影 转移 癌症 列线图 放射科 淋巴结 腋窝淋巴结 肿瘤科 核医学 内科学 乳腺摄影术
作者
Jing Gao,Xin Zhong,Wenjuan Li,Qin Li,Huafei Shao,Zhongyi Wang,Yi Dai,Heng Ma,Ying‐Hong Shi,Han Zhang,Shaofeng Duan,Kun Zhang,Ping Yang,Feng Zhao,Haicheng Zhang,Haizhu Xie,Ning Mao
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:57 (6): 1842-1853 被引量:42
标识
DOI:10.1002/jmri.28464
摘要

Background Previous studies have explored the potential on radiomics features of primary breast cancer tumor to identify axillary lymph node (ALN) metastasis. However, the value of deep learning (DL) to identify ALN metastasis remains unclear. Purpose To investigate the potential of the proposed attention‐based DL model for the preoperative differentiation of ALN metastasis in breast cancer on dynamic contrast‐enhanced MRI (DCE‐MRI). Study Type Retrospective. Population A total of 941 breast cancer patients who underwent DCE‐MRI before surgery were included in the training (742 patients), internal test (83 patients), and external test (116 patients) cohorts. Field Strength/Sequence A 3.0 T MR scanner, DCE‐MRI sequence. Assessment A DL model containing a 3D deep residual network (ResNet) architecture and a convolutional block attention module, named RCNet, was proposed for ALN metastasis identification. Three RCNet models were established based on the tumor, ALN, and combined tumor‐ALN regions on the images. The performance of these models was compared with ResNet models, radiomics models, the Memorial Sloan‐Kettering Cancer Center (MSKCC) model, and three radiologists (W.L., H.S., and F. L.). Statistical Tests Dice similarity coefficient for breast tumor and ALN segmentation. Accuracy, sensitivity, specificity, intercorrelation and intracorrelation coefficients, area under the curve (AUC), and Delong test for ALN classification. Results The optimal RCNet model, that is, RCNet −tumor+ALN , achieved an AUC of 0.907, an accuracy of 0.831, a sensitivity of 0.824, and a specificity of 0.837 in the internal test cohort, as well as an AUC of 0.852, an accuracy of 0.828, a sensitivity of 0.792, and a specificity of 0.853 in the external test cohort. Additionally, with the assistance of RCNet −tumor+ALN , the radiologists' performance was improved (external test cohort, P < 0.05). Data Conclusion DCE‐MRI‐based RCNet model could provide a noninvasive auxiliary tool to identify ALN metastasis preoperatively in breast cancer, which may assist radiologists in conducting more accurate evaluation of ALN status. Evidence Level 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Doctor_Xie发布了新的文献求助10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
abc完成签到 ,获得积分0
4秒前
4秒前
火星上的如松完成签到,获得积分10
5秒前
Xhhaai完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
Nam22完成签到,获得积分20
9秒前
思源应助hi采纳,获得10
11秒前
嘿嘿发布了新的文献求助20
11秒前
搜集达人应助暴走乄采纳,获得20
12秒前
ylzylz发布了新的文献求助10
12秒前
木昆完成签到 ,获得积分10
12秒前
17秒前
嘿嘿完成签到,获得积分0
17秒前
zjq发布了新的文献求助10
17秒前
Akim应助寒冷的云朵采纳,获得10
18秒前
20秒前
21秒前
孟婆婆的鸡汤完成签到,获得积分10
22秒前
Lulu完成签到 ,获得积分10
22秒前
pphu发布了新的文献求助100
23秒前
24秒前
25秒前
26秒前
大帅比完成签到 ,获得积分10
27秒前
liusuyi发布了新的文献求助10
29秒前
乐乐应助Xhhaai采纳,获得10
29秒前
pphu发布了新的文献求助10
30秒前
30秒前
暴走乄完成签到,获得积分10
30秒前
31秒前
zjq完成签到,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509144
求助须知:如何正确求助?哪些是违规求助? 4604163
关于积分的说明 14489285
捐赠科研通 4538831
什么是DOI,文献DOI怎么找? 2487198
邀请新用户注册赠送积分活动 1469617
关于科研通互助平台的介绍 1441838