亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Attention‐based Deep Learning for the Preoperative Differentiation of Axillary Lymph Node Metastasis in Breast Cancer on DCE‐MRI

乳腺癌 医学 乳房磁振造影 转移 癌症 列线图 放射科 淋巴结 腋窝淋巴结 肿瘤科 核医学 内科学 乳腺摄影术
作者
Jing Gao,Xin Zhong,Wenjuan Li,Qin Li,Huafei Shao,Zhongyi Wang,Yi Dai,Heng Ma,Ying‐Hong Shi,Han Zhang,Shaofeng Duan,Kun Zhang,Ping Yang,Feng Zhao,Haicheng Zhang,Haizhu Xie,Ning Mao
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:57 (6): 1842-1853 被引量:42
标识
DOI:10.1002/jmri.28464
摘要

Background Previous studies have explored the potential on radiomics features of primary breast cancer tumor to identify axillary lymph node (ALN) metastasis. However, the value of deep learning (DL) to identify ALN metastasis remains unclear. Purpose To investigate the potential of the proposed attention‐based DL model for the preoperative differentiation of ALN metastasis in breast cancer on dynamic contrast‐enhanced MRI (DCE‐MRI). Study Type Retrospective. Population A total of 941 breast cancer patients who underwent DCE‐MRI before surgery were included in the training (742 patients), internal test (83 patients), and external test (116 patients) cohorts. Field Strength/Sequence A 3.0 T MR scanner, DCE‐MRI sequence. Assessment A DL model containing a 3D deep residual network (ResNet) architecture and a convolutional block attention module, named RCNet, was proposed for ALN metastasis identification. Three RCNet models were established based on the tumor, ALN, and combined tumor‐ALN regions on the images. The performance of these models was compared with ResNet models, radiomics models, the Memorial Sloan‐Kettering Cancer Center (MSKCC) model, and three radiologists (W.L., H.S., and F. L.). Statistical Tests Dice similarity coefficient for breast tumor and ALN segmentation. Accuracy, sensitivity, specificity, intercorrelation and intracorrelation coefficients, area under the curve (AUC), and Delong test for ALN classification. Results The optimal RCNet model, that is, RCNet −tumor+ALN , achieved an AUC of 0.907, an accuracy of 0.831, a sensitivity of 0.824, and a specificity of 0.837 in the internal test cohort, as well as an AUC of 0.852, an accuracy of 0.828, a sensitivity of 0.792, and a specificity of 0.853 in the external test cohort. Additionally, with the assistance of RCNet −tumor+ALN , the radiologists' performance was improved (external test cohort, P < 0.05). Data Conclusion DCE‐MRI‐based RCNet model could provide a noninvasive auxiliary tool to identify ALN metastasis preoperatively in breast cancer, which may assist radiologists in conducting more accurate evaluation of ALN status. Evidence Level 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
8秒前
妮子发布了新的社区帖子
10秒前
阿乐完成签到 ,获得积分10
15秒前
lily给ZJakariae的求助进行了留言
16秒前
28秒前
30秒前
33秒前
小o发布了新的文献求助10
36秒前
44秒前
karstbing完成签到,获得积分10
45秒前
52秒前
1分钟前
lily完成签到,获得积分10
1分钟前
上官若男应助妮子采纳,获得30
1分钟前
共享精神应助小o采纳,获得10
1分钟前
1分钟前
1分钟前
Arron完成签到,获得积分10
1分钟前
1分钟前
汤317完成签到,获得积分10
1分钟前
yuzuiris完成签到 ,获得积分10
1分钟前
1分钟前
Estrella发布了新的文献求助10
1分钟前
1121完成签到 ,获得积分10
1分钟前
Estrella完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
赘婿应助zy采纳,获得10
1分钟前
Zongxin应助千早爱音采纳,获得100
1分钟前
2分钟前
ding应助托塔大王采纳,获得10
2分钟前
二三语逢山外山完成签到 ,获得积分10
2分钟前
zy发布了新的文献求助10
2分钟前
2分钟前
zy完成签到,获得积分10
2分钟前
2分钟前
我不到啊完成签到 ,获得积分10
2分钟前
2分钟前
重庆森林完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5595676
求助须知:如何正确求助?哪些是违规求助? 4680968
关于积分的说明 14818069
捐赠科研通 4651636
什么是DOI,文献DOI怎么找? 2535574
邀请新用户注册赠送积分活动 1503527
关于科研通互助平台的介绍 1469754