亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Attention‐based Deep Learning for the Preoperative Differentiation of Axillary Lymph Node Metastasis in Breast Cancer on DCE‐MRI

乳腺癌 医学 乳房磁振造影 转移 癌症 列线图 放射科 淋巴结 腋窝淋巴结 肿瘤科 核医学 内科学 乳腺摄影术
作者
Jing Gao,Xin Zhong,Wenjuan Li,Qin Li,Huafei Shao,Zhongyi Wang,Yi Dai,Heng Ma,Ying‐Hong Shi,Han Zhang,Shaofeng Duan,Kun Zhang,Ping Yang,Feng Zhao,Haicheng Zhang,Haizhu Xie,Ning Mao
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:57 (6): 1842-1853 被引量:42
标识
DOI:10.1002/jmri.28464
摘要

Background Previous studies have explored the potential on radiomics features of primary breast cancer tumor to identify axillary lymph node (ALN) metastasis. However, the value of deep learning (DL) to identify ALN metastasis remains unclear. Purpose To investigate the potential of the proposed attention‐based DL model for the preoperative differentiation of ALN metastasis in breast cancer on dynamic contrast‐enhanced MRI (DCE‐MRI). Study Type Retrospective. Population A total of 941 breast cancer patients who underwent DCE‐MRI before surgery were included in the training (742 patients), internal test (83 patients), and external test (116 patients) cohorts. Field Strength/Sequence A 3.0 T MR scanner, DCE‐MRI sequence. Assessment A DL model containing a 3D deep residual network (ResNet) architecture and a convolutional block attention module, named RCNet, was proposed for ALN metastasis identification. Three RCNet models were established based on the tumor, ALN, and combined tumor‐ALN regions on the images. The performance of these models was compared with ResNet models, radiomics models, the Memorial Sloan‐Kettering Cancer Center (MSKCC) model, and three radiologists (W.L., H.S., and F. L.). Statistical Tests Dice similarity coefficient for breast tumor and ALN segmentation. Accuracy, sensitivity, specificity, intercorrelation and intracorrelation coefficients, area under the curve (AUC), and Delong test for ALN classification. Results The optimal RCNet model, that is, RCNet −tumor+ALN , achieved an AUC of 0.907, an accuracy of 0.831, a sensitivity of 0.824, and a specificity of 0.837 in the internal test cohort, as well as an AUC of 0.852, an accuracy of 0.828, a sensitivity of 0.792, and a specificity of 0.853 in the external test cohort. Additionally, with the assistance of RCNet −tumor+ALN , the radiologists' performance was improved (external test cohort, P < 0.05). Data Conclusion DCE‐MRI‐based RCNet model could provide a noninvasive auxiliary tool to identify ALN metastasis preoperatively in breast cancer, which may assist radiologists in conducting more accurate evaluation of ALN status. Evidence Level 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
VDC发布了新的文献求助10
3秒前
田様应助浪里白条采纳,获得10
11秒前
17秒前
20秒前
科研小新发布了新的文献求助10
20秒前
小圆发布了新的文献求助10
25秒前
26秒前
李爱国应助科研小新采纳,获得10
27秒前
Amber发布了新的文献求助10
33秒前
36秒前
42秒前
月月发布了新的文献求助10
42秒前
Anlocia完成签到 ,获得积分10
42秒前
XX发布了新的文献求助10
45秒前
ktw完成签到,获得积分10
46秒前
Youy完成签到 ,获得积分10
48秒前
小池完成签到,获得积分10
48秒前
世良发布了新的文献求助10
53秒前
月月完成签到,获得积分10
56秒前
Lucas应助科研通管家采纳,获得10
57秒前
Criminology34应助科研通管家采纳,获得10
57秒前
Akim应助科研通管家采纳,获得10
57秒前
Criminology34应助科研通管家采纳,获得10
57秒前
SciGPT应助科研通管家采纳,获得10
57秒前
ceeray23应助科研通管家采纳,获得10
57秒前
西吴完成签到 ,获得积分10
57秒前
ceeray23应助科研通管家采纳,获得10
57秒前
58秒前
bkagyin应助chen采纳,获得10
59秒前
1分钟前
小池发布了新的文献求助10
1分钟前
1分钟前
1分钟前
chen发布了新的文献求助10
1分钟前
lu2025完成签到,获得积分10
1分钟前
1分钟前
茄子发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
独特的师完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650695
求助须知:如何正确求助?哪些是违规求助? 4781473
关于积分的说明 15052510
捐赠科研通 4809531
什么是DOI,文献DOI怎么找? 2572352
邀请新用户注册赠送积分活动 1528481
关于科研通互助平台的介绍 1487362