Attention‐based Deep Learning for the Preoperative Differentiation of Axillary Lymph Node Metastasis in Breast Cancer on DCE‐MRI

乳腺癌 医学 乳房磁振造影 转移 癌症 列线图 放射科 淋巴结 腋窝淋巴结 肿瘤科 核医学 内科学 乳腺摄影术
作者
Jing Gao,Xin Zhong,Wenjuan Li,Qin Li,Huafei Shao,Zhongyi Wang,Yi Dai,Heng Ma,Ying‐Hong Shi,Han Zhang,Shaofeng Duan,Kun Zhang,Ping Yang,Feng Zhao,Haicheng Zhang,Haizhu Xie,Ning Mao
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:57 (6): 1842-1853 被引量:28
标识
DOI:10.1002/jmri.28464
摘要

Previous studies have explored the potential on radiomics features of primary breast cancer tumor to identify axillary lymph node (ALN) metastasis. However, the value of deep learning (DL) to identify ALN metastasis remains unclear.To investigate the potential of the proposed attention-based DL model for the preoperative differentiation of ALN metastasis in breast cancer on dynamic contrast-enhanced MRI (DCE-MRI).Retrospective.A total of 941 breast cancer patients who underwent DCE-MRI before surgery were included in the training (742 patients), internal test (83 patients), and external test (116 patients) cohorts.A 3.0 T MR scanner, DCE-MRI sequence.A DL model containing a 3D deep residual network (ResNet) architecture and a convolutional block attention module, named RCNet, was proposed for ALN metastasis identification. Three RCNet models were established based on the tumor, ALN, and combined tumor-ALN regions on the images. The performance of these models was compared with ResNet models, radiomics models, the Memorial Sloan-Kettering Cancer Center (MSKCC) model, and three radiologists (W.L., H.S., and F. L.).Dice similarity coefficient for breast tumor and ALN segmentation. Accuracy, sensitivity, specificity, intercorrelation and intracorrelation coefficients, area under the curve (AUC), and Delong test for ALN classification.The optimal RCNet model, that is, RCNet-tumor+ALN , achieved an AUC of 0.907, an accuracy of 0.831, a sensitivity of 0.824, and a specificity of 0.837 in the internal test cohort, as well as an AUC of 0.852, an accuracy of 0.828, a sensitivity of 0.792, and a specificity of 0.853 in the external test cohort. Additionally, with the assistance of RCNet-tumor+ALN , the radiologists' performance was improved (external test cohort, P < 0.05).DCE-MRI-based RCNet model could provide a noninvasive auxiliary tool to identify ALN metastasis preoperatively in breast cancer, which may assist radiologists in conducting more accurate evaluation of ALN status.3 TECHNICAL EFFICACY: Stage 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kevinjy完成签到,获得积分10
2秒前
zzzzzzzzzzzzb发布了新的文献求助10
2秒前
4秒前
6秒前
:P发布了新的文献求助20
7秒前
Mea完成签到,获得积分10
7秒前
9秒前
高妖丽发布了新的文献求助30
9秒前
10秒前
llllt发布了新的文献求助10
13秒前
搜集达人应助zzzzzzzzzzzzb采纳,获得10
14秒前
池鱼完成签到,获得积分10
14秒前
110011发布了新的文献求助10
18秒前
所所应助科研通管家采纳,获得10
18秒前
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
18秒前
小白应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
地表飞猪应助科研通管家采纳,获得10
18秒前
20秒前
gzslwddhjx完成签到,获得积分10
21秒前
24秒前
科研通AI5应助搞怪白桃采纳,获得10
26秒前
26秒前
柠檬不吃酸完成签到 ,获得积分10
27秒前
Chen完成签到,获得积分10
27秒前
28秒前
铭心发布了新的文献求助10
29秒前
31秒前
110011完成签到,获得积分10
31秒前
32秒前
正直阁完成签到,获得积分10
35秒前
小二郎应助刻苦的宛白采纳,获得30
39秒前
深海完成签到,获得积分10
41秒前
45秒前
48秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967131
求助须知:如何正确求助?哪些是违规求助? 3512470
关于积分的说明 11163384
捐赠科研通 3247378
什么是DOI,文献DOI怎么找? 1793799
邀请新用户注册赠送积分活动 874615
科研通“疑难数据库(出版商)”最低求助积分说明 804450