SwinFuse: A Residual Swin Transformer Fusion Network for Infrared and Visible Images

残余物 计算机科学 人工智能 卷积神经网络 模式识别(心理学) 融合 变压器 特征提取 深度学习 特征学习 算法 工程类 语言学 电气工程 哲学 电压
作者
Zhishe Wang,Yanlin Chen,Wenyu Shao,Hui Li,Lei Zhang
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2204.11436
摘要

The existing deep learning fusion methods mainly concentrate on the convolutional neural networks, and few attempts are made with transformer. Meanwhile, the convolutional operation is a content-independent interaction between the image and convolution kernel, which may lose some important contexts and further limit fusion performance. Towards this end, we present a simple and strong fusion baseline for infrared and visible images, namely\textit{ Residual Swin Transformer Fusion Network}, termed as SwinFuse. Our SwinFuse includes three parts: the global feature extraction, fusion layer and feature reconstruction. In particular, we build a fully attentional feature encoding backbone to model the long-range dependency, which is a pure transformer network and has a stronger representation ability compared with the convolutional neural networks. Moreover, we design a novel feature fusion strategy based on $L_{1}$-norm for sequence matrices, and measure the corresponding activity levels from row and column vector dimensions, which can well retain competitive infrared brightness and distinct visible details. Finally, we testify our SwinFuse with nine state-of-the-art traditional and deep learning methods on three different datasets through subjective observations and objective comparisons, and the experimental results manifest that the proposed SwinFuse obtains surprising fusion performance with strong generalization ability and competitive computational efficiency. The code will be available at https://github.com/Zhishe-Wang/SwinFuse.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助现代的曼香采纳,获得10
刚刚
刚刚
桃花依旧发布了新的文献求助30
刚刚
goodgoodstudy发布了新的文献求助10
1秒前
2秒前
Lucas应助小易采纳,获得10
2秒前
2秒前
yiyi完成签到,获得积分10
3秒前
科研通AI5应助晚风采纳,获得10
3秒前
Trey发布了新的文献求助10
4秒前
美雪曹完成签到,获得积分20
4秒前
4秒前
4秒前
4秒前
5秒前
情怀应助秘书处堂采纳,获得10
5秒前
5秒前
不二发布了新的文献求助10
6秒前
pgg发布了新的文献求助10
7秒前
顺利毕业完成签到,获得积分10
7秒前
7秒前
SYLH应助TanFT采纳,获得10
7秒前
坚强亦丝应助TanFT采纳,获得10
7秒前
上官若男应助TanFT采纳,获得10
7秒前
无花果应助Kris采纳,获得10
8秒前
健那绿发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
goodgoodstudy完成签到,获得积分10
11秒前
封尘逸动发布了新的文献求助10
12秒前
14秒前
研友_8DAv0L发布了新的文献求助10
14秒前
15秒前
华仔应助pgg采纳,获得10
15秒前
Maxine完成签到 ,获得积分10
15秒前
小二郎应助Clearday采纳,获得10
16秒前
杳鸢应助敬云采纳,获得30
17秒前
科目三应助江上清风游采纳,获得10
17秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515778
求助须知:如何正确求助?哪些是违规求助? 3098003
关于积分的说明 9237753
捐赠科研通 2792964
什么是DOI,文献DOI怎么找? 1532775
邀请新用户注册赠送积分活动 712297
科研通“疑难数据库(出版商)”最低求助积分说明 707233