Anti-Aliasing and Anti-Color-Artifact Demosaicing for High-Resolution CMOS Image Sensor

脱模 彩色滤光片阵列 RGB颜色模型 计算机视觉 人工智能 拜尔滤镜 彩色图像 像素 计算机科学 工件(错误) 滤波器(信号处理) 混叠 彩色凝胶 图像处理 图像(数学) 化学 有机化学 图层(电子) 薄膜晶体管
作者
Yangyi Zhang,Xianglong Wang,Gang Shi,Zizhao Peng,Lei Chen,Fengwei An
出处
期刊:IEEE Transactions on Circuits and Systems I-regular Papers [Institute of Electrical and Electronics Engineers]
卷期号:70 (12): 4928-4937
标识
DOI:10.1109/tcsi.2023.3290157
摘要

Demosaicing is a technique that reconstructs an RGB image from fragmentary color samples sensed by the image sensor. The color filter array (CFA), which is placed over the image sensor, determines the color of each pixel. The most used color filter array is the Bayer CFA. This paper proposes an Anti-Aliasing and Anti-Color-Artifact Demosaicing (AAACA) algorithm for the Bayer pattern and the resource-efficient very-large-scale integration (VLSI) architecture for the proposed algorithm. The AAACA comprises an anti-aliasing approach and a color artifacts filter named color difference-based median filter (CDMF). Compared to the traditional demosaicing methods that equally treat pixels on and not on edges, the AA reconstructs the pixels on edges with different strategies from those not on edges, significantly removing the aliasing around recovered edges. Then the CDMF is utilized to remove the color artifacts of the reconstructed RGB image based on the color difference after median filtering. We respectively simulate the quantitative evaluation and subjective visual quality on McMaster and Kodak datasets. Our experiments reveal that the proposed AAACA algorithm can significantly remove the visual aliasing around recovered edges and greatly reduce color artifacts in demosaiced images compared to the state-of-art demosaicing algorithms. The proposed VLSI architectures can achieve superior visual qualities compared with the previous VLSI implementations under the same process technology conditions with 180nm CMOS technology, an image resolution of $1280\times 720$ (HD), and a working frequency of 200MHz.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
山神厘子完成签到,获得积分10
刚刚
传奇3应助Fann采纳,获得10
1秒前
1秒前
1秒前
所所应助jason采纳,获得10
2秒前
Yuan应助知名不具采纳,获得10
2秒前
rachel03发布了新的文献求助10
2秒前
3秒前
苏书白完成签到 ,获得积分10
3秒前
111完成签到,获得积分20
3秒前
hetao发布了新的文献求助10
3秒前
哇哈哈发布了新的文献求助20
4秒前
5秒前
chen完成签到,获得积分10
5秒前
catherine完成签到,获得积分10
5秒前
5秒前
6秒前
小笼包发布了新的文献求助10
6秒前
健忘的学生完成签到,获得积分10
6秒前
草莓熊完成签到,获得积分10
7秒前
7秒前
大树发布了新的文献求助10
9秒前
Accepted应助winter采纳,获得10
10秒前
10秒前
duoduo完成签到 ,获得积分10
10秒前
喜悦寻梅发布了新的文献求助10
10秒前
10秒前
鱼啦啦完成签到,获得积分10
11秒前
11秒前
12秒前
可爱的函函应助ckl采纳,获得10
12秒前
hetao完成签到,获得积分10
14秒前
14秒前
maoyingji完成签到,获得积分10
14秒前
Fann完成签到,获得积分10
14秒前
充电宝应助xumq采纳,获得10
15秒前
17秒前
林小熊完成签到,获得积分10
17秒前
FBQZDJG2122完成签到,获得积分10
18秒前
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148415
求助须知:如何正确求助?哪些是违规求助? 2799563
关于积分的说明 7835686
捐赠科研通 2456891
什么是DOI,文献DOI怎么找? 1307645
科研通“疑难数据库(出版商)”最低求助积分说明 628217
版权声明 601655