Scaling aligned carbon nanotube transistors to a sub-10 nm node

材料科学 跨导 碳纳米管 小型化 光电子学 晶体管 纳米管 接触电阻 碳纳米管场效应晶体管 纳米技术 场效应晶体管 电气工程 图层(电子) 工程类 电压
作者
Yanxia Lin,Yu Cao,Sujuan Ding,Panpan Zhang,Lin Xu,Chenchen Liu,Qianlan Hu,Chuanhong Jin,Lian‐Mao Peng,Zhiyong Zhang
出处
期刊:Nature electronics [Nature Portfolio]
卷期号:6 (7): 506-515 被引量:101
标识
DOI:10.1038/s41928-023-00983-3
摘要

Aligned semiconducting carbon nanotubes are a potential alternative to silicon in the creation of scaled field-effect transistors (FETs) due to their easy miniaturization and high energy efficiency. However, it remains unclear whether aligned nanotube transistors can be fabricated at the same dimensions as low-node silicon technology and maintaining high performance. Here we report aligned carbon nanotube FETs that can be scaled to a size corresponding to the 10 nm silicon technology node. We first fabricate nanotube FETs with a contacted gate pitch of 175 nm (achieved by scaling the gate length and contact length to 85 nm and 80 nm, respectively) that exhibit an on current of 2.24 mA μm–1 and peak transconductance of 1.64 mS μm–1; this is superior to 45 nm silicon technology node transistors in terms of size and electronic performance. Six nanotube FETs are used to create a static random-access memory cell with an area of 0.976 μm2, which is comparable with the 90 nm silicon technology node. A full-contact structure is then introduced between the metal and nanotubes to achieve a low contact resistance of 90 Ω μm and reduce the dependence on the contact length. This is used to create nanotube FETs with a contacted gate pitch of 55 nm—corresponding to the 10 nm node—with carrier mobility and Fermi velocity higher than the 10 nm silicon metal–oxide–semiconductor transistors. Aligned carbon nanotubes can be used to create six-transistor static random-access memory cells with an area of less than 1 μm2 and performance superior to cells made using 90-nm-node silicon transistors, as well as field-effect transistors with scaled contacted gate pitch comparable with the 10 nm silicon technology node.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到 ,获得积分10
刚刚
CNAxiaozhu7完成签到,获得积分0
2秒前
plants发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助150
3秒前
xinxiangshicheng完成签到 ,获得积分10
9秒前
科目三应助Heng采纳,获得10
9秒前
Y.J发布了新的文献求助10
10秒前
12秒前
量子星尘发布了新的文献求助150
13秒前
务实青筠完成签到 ,获得积分10
15秒前
搬砖的化学男完成签到 ,获得积分0
15秒前
jixuchance完成签到,获得积分10
17秒前
ACMI发布了新的文献求助10
17秒前
zxy应助唐泽雪穗采纳,获得20
18秒前
hunzizzzzz完成签到,获得积分10
18秒前
鲁滨逊完成签到 ,获得积分10
19秒前
cgliuhx完成签到,获得积分10
20秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
赘婿应助科研通管家采纳,获得10
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
FashionBoy应助科研通管家采纳,获得10
21秒前
21秒前
清秀龙猫完成签到 ,获得积分10
22秒前
23秒前
祁灵枫完成签到,获得积分10
23秒前
ACMI完成签到,获得积分10
24秒前
26秒前
Sleven完成签到,获得积分10
26秒前
ESC惠子子子子子完成签到 ,获得积分10
28秒前
唐泽雪穗发布了新的文献求助20
29秒前
qlmian完成签到,获得积分10
33秒前
量子星尘发布了新的文献求助10
35秒前
clare完成签到 ,获得积分10
37秒前
又又完成签到 ,获得积分10
37秒前
39秒前
OmmeHabiba发布了新的文献求助10
44秒前
wBw完成签到,获得积分0
46秒前
大猪完成签到 ,获得积分10
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5066726
求助须知:如何正确求助?哪些是违规求助? 4288676
关于积分的说明 13360388
捐赠科研通 4108050
什么是DOI,文献DOI怎么找? 2249494
邀请新用户注册赠送积分活动 1254924
关于科研通互助平台的介绍 1187333