麦克斯韦方程组
数学
趋同(经济学)
应用数学
理论(学习稳定性)
电磁场求解器
空格(标点符号)
散射矩阵法
代数结构
代数方程
收敛速度
数学分析
非齐次电磁波方程
计算机科学
钥匙(锁)
电磁场
非线性系统
物理
纯数学
计算机安全
量子力学
机器学习
光场
经济
经济增长
操作系统
作者
Linghua Kong,Peng Zhang,Meng Chen
标识
DOI:10.1016/j.jcp.2023.112357
摘要
Two energy structure-preserving schemes are proposed for Maxwell's equations in three dimensions. The Maxwell's equations are split into several local one-dimensional subproblems which successfully reduces the scale of algebraic equations to be solved. To improve the convergence rate in space and to keep the sparsity of the resulting algebraic equations, the spatial derivatives are approximated by high order compact method. Some key indicators, such as stability, energy structure-preserving and convergence of the schemes are investigated. To make the theoretical more persuasive, some numerical examples are shown. Numerical results are accord with the theoretical results. This provides a practical approach to construct efficient structure-preserving algorithms multidimensional Maxwell's equations.
科研通智能强力驱动
Strongly Powered by AbleSci AI