DSMT-Net: Dual Self-Supervised Multi-Operator Transformation for Multi-Source Endoscopic Ultrasound Diagnosis

计算机科学 人工智能 深度学习 分割 模式识别(心理学) 特征提取 转化(遗传学) 生物化学 基因 化学
作者
Jiajia Li,Ping Zhang,Teng Wang,Lei Zhu,Ruhan Liu,Xia Yang,Kaixuan Wang,Dinggang Shen,Bin Sheng
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (1): 64-75 被引量:27
标识
DOI:10.1109/tmi.2023.3289859
摘要

Pancreatic cancer has the worst prognosis of all cancers. The clinical application of endoscopic ultrasound (EUS) for the assessment of pancreatic cancer risk and of deep learning for the classification of EUS images have been hindered by inter-grader variability and labeling capability. One of the key reasons for these difficulties is that EUS images are obtained from multiple sources with varying resolutions, effective regions, and interference signals, making the distribution of the data highly variable and negatively impacting the performance of deep learning models. Additionally, manual labeling of images is time-consuming and requires significant effort, leading to the desire to effectively utilize a large amount of unlabeled data for network training. To address these challenges, this study proposes the Dual Self-supervised Multi-Operator Transformation Network (DSMT-Net) for multi-source EUS diagnosis. The DSMT-Net includes a multi-operator transformation approach to standardize the extraction of regions of interest in EUS images and eliminate irrelevant pixels. Furthermore, a transformer-based dual self-supervised network is designed to integrate unlabeled EUS images for pre-training the representation model, which can be transferred to supervised tasks such as classification, detection, and segmentation. A large-scale EUS-based pancreas image dataset (LEPset) has been collected, including 3,500 pathologically proven labeled EUS images (from pancreatic and non-pancreatic cancers) and 8,000 unlabeled EUS images for model development. The self-supervised method has also been applied to breast cancer diagnosis and was compared to state-of-the-art deep learning models on both datasets. The results demonstrate that the DSMT-Net significantly improves the accuracy of pancreatic and breast cancer diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
鱼儿游啊游完成签到,获得积分10
2秒前
3秒前
方方发布了新的文献求助10
3秒前
高贵的涛涛完成签到,获得积分10
3秒前
4秒前
知名不具完成签到 ,获得积分10
5秒前
学不懂完成签到,获得积分10
6秒前
大气的妙旋完成签到,获得积分10
6秒前
多情紫霜发布了新的文献求助30
7秒前
开放的玉米完成签到,获得积分10
8秒前
肥肥完成签到 ,获得积分10
9秒前
Lyw完成签到 ,获得积分10
9秒前
毛毛弟发布了新的文献求助10
9秒前
10秒前
小欧文完成签到,获得积分10
11秒前
1111111111应助kkkdachui采纳,获得10
12秒前
山山以川发布了新的文献求助10
12秒前
dagongren完成签到,获得积分10
12秒前
晓先森完成签到,获得积分10
14秒前
ny完成签到,获得积分10
15秒前
15秒前
juqiu发布了新的文献求助10
15秒前
彭于晏应助方方采纳,获得10
16秒前
科研通AI6应助多情紫霜采纳,获得10
16秒前
16秒前
17秒前
17秒前
所所应助雪花采纳,获得10
18秒前
Hello应助花花采纳,获得10
18秒前
cc完成签到,获得积分20
18秒前
19秒前
刘佳慧发布了新的文献求助10
19秒前
科研小陈完成签到,获得积分10
20秒前
pups发布了新的文献求助20
21秒前
JUNJUN发布了新的文献求助30
21秒前
麻辣炒年糕完成签到 ,获得积分10
21秒前
Lucas应助wang采纳,获得30
21秒前
21秒前
李健的小迷弟应助W昂采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284055
求助须知:如何正确求助?哪些是违规求助? 4437688
关于积分的说明 13814537
捐赠科研通 4318612
什么是DOI,文献DOI怎么找? 2370475
邀请新用户注册赠送积分活动 1365895
关于科研通互助平台的介绍 1329363