DSMT-Net: Dual Self-Supervised Multi-Operator Transformation for Multi-Source Endoscopic Ultrasound Diagnosis

计算机科学 人工智能 深度学习 分割 模式识别(心理学) 特征提取 转化(遗传学) 生物化学 基因 化学
作者
Jiajia Li,Ping Zhang,Teng Wang,Lei Zhu,Ruhan Liu,Xia Yang,Kaixuan Wang,Dinggang Shen,Bin Sheng
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (1): 64-75 被引量:27
标识
DOI:10.1109/tmi.2023.3289859
摘要

Pancreatic cancer has the worst prognosis of all cancers. The clinical application of endoscopic ultrasound (EUS) for the assessment of pancreatic cancer risk and of deep learning for the classification of EUS images have been hindered by inter-grader variability and labeling capability. One of the key reasons for these difficulties is that EUS images are obtained from multiple sources with varying resolutions, effective regions, and interference signals, making the distribution of the data highly variable and negatively impacting the performance of deep learning models. Additionally, manual labeling of images is time-consuming and requires significant effort, leading to the desire to effectively utilize a large amount of unlabeled data for network training. To address these challenges, this study proposes the Dual Self-supervised Multi-Operator Transformation Network (DSMT-Net) for multi-source EUS diagnosis. The DSMT-Net includes a multi-operator transformation approach to standardize the extraction of regions of interest in EUS images and eliminate irrelevant pixels. Furthermore, a transformer-based dual self-supervised network is designed to integrate unlabeled EUS images for pre-training the representation model, which can be transferred to supervised tasks such as classification, detection, and segmentation. A large-scale EUS-based pancreas image dataset (LEPset) has been collected, including 3,500 pathologically proven labeled EUS images (from pancreatic and non-pancreatic cancers) and 8,000 unlabeled EUS images for model development. The self-supervised method has also been applied to breast cancer diagnosis and was compared to state-of-the-art deep learning models on both datasets. The results demonstrate that the DSMT-Net significantly improves the accuracy of pancreatic and breast cancer diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
崔康佳完成签到,获得积分10
1秒前
陈秋完成签到,获得积分10
3秒前
超帅的又槐完成签到,获得积分10
4秒前
hi_traffic完成签到,获得积分10
4秒前
青春完成签到,获得积分10
8秒前
8秒前
shyxia完成签到 ,获得积分10
10秒前
Yy完成签到 ,获得积分10
12秒前
Vanni发布了新的文献求助30
13秒前
qianci2009完成签到,获得积分10
14秒前
16秒前
殷勤的凝海完成签到 ,获得积分10
23秒前
好好完成签到,获得积分10
24秒前
24秒前
灰鸽舞完成签到 ,获得积分10
25秒前
mss12138完成签到 ,获得积分10
27秒前
1205114938发布了新的文献求助10
27秒前
28秒前
kelien1205完成签到 ,获得积分10
29秒前
稳重母鸡完成签到 ,获得积分10
29秒前
xqh完成签到,获得积分10
30秒前
tigger完成签到 ,获得积分10
36秒前
桢桢树完成签到 ,获得积分10
38秒前
凶狠的白桃完成签到 ,获得积分10
43秒前
年轻千愁完成签到 ,获得积分10
43秒前
44秒前
和谐的果汁完成签到 ,获得积分10
45秒前
杜科研发布了新的文献求助10
51秒前
爱吃无核瓜子完成签到,获得积分10
53秒前
蛋卷完成签到 ,获得积分10
54秒前
胖胖完成签到 ,获得积分0
55秒前
我本人lrx完成签到 ,获得积分10
56秒前
woshiwuziq完成签到 ,获得积分10
56秒前
58秒前
1分钟前
杜科研完成签到,获得积分10
1分钟前
郝志红完成签到 ,获得积分10
1分钟前
芒芒发paper完成签到 ,获得积分10
1分钟前
1分钟前
yong完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5315200
求助须知:如何正确求助?哪些是违规求助? 4457851
关于积分的说明 13868384
捐赠科研通 4347405
什么是DOI,文献DOI怎么找? 2387759
邀请新用户注册赠送积分活动 1381862
关于科研通互助平台的介绍 1351115