已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DSMT-Net: Dual Self-Supervised Multi-Operator Transformation for Multi-Source Endoscopic Ultrasound Diagnosis

计算机科学 人工智能 深度学习 分割 模式识别(心理学) 特征提取 转化(遗传学) 生物化学 基因 化学
作者
Jiajia Li,Ping Zhang,Teng Wang,Lei Zhu,Ruhan Liu,Xia Yang,Kaixuan Wang,Dinggang Shen,Bin Sheng
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (1): 64-75 被引量:27
标识
DOI:10.1109/tmi.2023.3289859
摘要

Pancreatic cancer has the worst prognosis of all cancers. The clinical application of endoscopic ultrasound (EUS) for the assessment of pancreatic cancer risk and of deep learning for the classification of EUS images have been hindered by inter-grader variability and labeling capability. One of the key reasons for these difficulties is that EUS images are obtained from multiple sources with varying resolutions, effective regions, and interference signals, making the distribution of the data highly variable and negatively impacting the performance of deep learning models. Additionally, manual labeling of images is time-consuming and requires significant effort, leading to the desire to effectively utilize a large amount of unlabeled data for network training. To address these challenges, this study proposes the Dual Self-supervised Multi-Operator Transformation Network (DSMT-Net) for multi-source EUS diagnosis. The DSMT-Net includes a multi-operator transformation approach to standardize the extraction of regions of interest in EUS images and eliminate irrelevant pixels. Furthermore, a transformer-based dual self-supervised network is designed to integrate unlabeled EUS images for pre-training the representation model, which can be transferred to supervised tasks such as classification, detection, and segmentation. A large-scale EUS-based pancreas image dataset (LEPset) has been collected, including 3,500 pathologically proven labeled EUS images (from pancreatic and non-pancreatic cancers) and 8,000 unlabeled EUS images for model development. The self-supervised method has also been applied to breast cancer diagnosis and was compared to state-of-the-art deep learning models on both datasets. The results demonstrate that the DSMT-Net significantly improves the accuracy of pancreatic and breast cancer diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科目三应助阿米尔盼盼采纳,获得10
2秒前
畅快谷蕊发布了新的文献求助20
2秒前
moiaoh发布了新的文献求助10
4秒前
YuanLeiZhang完成签到,获得积分10
7秒前
欣喜的人龙完成签到 ,获得积分10
12秒前
12秒前
shuhaha完成签到,获得积分10
12秒前
16秒前
17秒前
忐忑的黄豆完成签到,获得积分10
17秒前
玖玖完成签到,获得积分10
17秒前
清爽的柚子完成签到 ,获得积分10
17秒前
w1x2123完成签到,获得积分10
18秒前
lin发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
19秒前
xu1227发布了新的文献求助10
22秒前
091完成签到 ,获得积分10
29秒前
可靠绮琴完成签到,获得积分10
29秒前
方式产生的完成签到,获得积分10
30秒前
斯文败类应助羊羊采纳,获得10
31秒前
31秒前
zhangxinan完成签到,获得积分10
36秒前
目土土完成签到 ,获得积分10
38秒前
章传奇完成签到 ,获得积分10
42秒前
ehsl完成签到,获得积分10
42秒前
43秒前
NANA完成签到 ,获得积分10
43秒前
NexusExplorer应助执着白筠采纳,获得10
45秒前
Doctor完成签到,获得积分10
45秒前
科研通AI6应助美兮采纳,获得10
46秒前
吕半鬼完成签到,获得积分0
47秒前
田様应助linkman采纳,获得50
53秒前
仙都丽娜应助linkman采纳,获得10
53秒前
淡淡的南风应助linkman采纳,获得100
53秒前
希望天下0贩的0应助linkman采纳,获得10
53秒前
完美世界应助杜大帅采纳,获得10
54秒前
双子土豆泥完成签到 ,获得积分10
57秒前
云云完成签到,获得积分10
1分钟前
上官若男应助cxws采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4952219
求助须知:如何正确求助?哪些是违规求助? 4214998
关于积分的说明 13110561
捐赠科研通 3996730
什么是DOI,文献DOI怎么找? 2187652
邀请新用户注册赠送积分活动 1202932
关于科研通互助平台的介绍 1115710