DSMT-Net: Dual Self-Supervised Multi-Operator Transformation for Multi-Source Endoscopic Ultrasound Diagnosis

计算机科学 人工智能 深度学习 分割 模式识别(心理学) 特征提取 转化(遗传学) 生物化学 基因 化学
作者
Jiajia Li,Ping Zhang,Teng Wang,Lei Zhu,Ruhan Liu,Xia Yang,Kaixuan Wang,Dinggang Shen,Bin Sheng
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (1): 64-75 被引量:27
标识
DOI:10.1109/tmi.2023.3289859
摘要

Pancreatic cancer has the worst prognosis of all cancers. The clinical application of endoscopic ultrasound (EUS) for the assessment of pancreatic cancer risk and of deep learning for the classification of EUS images have been hindered by inter-grader variability and labeling capability. One of the key reasons for these difficulties is that EUS images are obtained from multiple sources with varying resolutions, effective regions, and interference signals, making the distribution of the data highly variable and negatively impacting the performance of deep learning models. Additionally, manual labeling of images is time-consuming and requires significant effort, leading to the desire to effectively utilize a large amount of unlabeled data for network training. To address these challenges, this study proposes the Dual Self-supervised Multi-Operator Transformation Network (DSMT-Net) for multi-source EUS diagnosis. The DSMT-Net includes a multi-operator transformation approach to standardize the extraction of regions of interest in EUS images and eliminate irrelevant pixels. Furthermore, a transformer-based dual self-supervised network is designed to integrate unlabeled EUS images for pre-training the representation model, which can be transferred to supervised tasks such as classification, detection, and segmentation. A large-scale EUS-based pancreas image dataset (LEPset) has been collected, including 3,500 pathologically proven labeled EUS images (from pancreatic and non-pancreatic cancers) and 8,000 unlabeled EUS images for model development. The self-supervised method has also been applied to breast cancer diagnosis and was compared to state-of-the-art deep learning models on both datasets. The results demonstrate that the DSMT-Net significantly improves the accuracy of pancreatic and breast cancer diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
默默的涵柏完成签到,获得积分20
刚刚
黄健伟完成签到,获得积分20
1秒前
墙头的草发布了新的文献求助10
1秒前
颜凡桃发布了新的文献求助10
1秒前
张雯思发布了新的文献求助10
2秒前
张雯思发布了新的文献求助10
2秒前
张雯思发布了新的文献求助10
2秒前
张雯思发布了新的文献求助10
2秒前
张雯思发布了新的文献求助10
2秒前
2秒前
张雯思发布了新的文献求助10
2秒前
张雯思发布了新的文献求助10
2秒前
hhh完成签到,获得积分10
2秒前
张雯思发布了新的文献求助10
2秒前
2秒前
Lucas应助刻苦代灵采纳,获得10
3秒前
帝国之刃发布了新的文献求助10
3秒前
steven完成签到 ,获得积分10
4秒前
姜姜完成签到,获得积分20
5秒前
丘比特应助黄健伟采纳,获得10
6秒前
6秒前
oblivious完成签到,获得积分10
6秒前
充电宝应助flyzhang20采纳,获得30
7秒前
直率千青完成签到,获得积分10
7秒前
哇啦哇啦呼呼应助梁艳采纳,获得10
7秒前
baiweizi完成签到,获得积分10
8秒前
在水一方应助kangkang采纳,获得10
9秒前
9秒前
ppaahan发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
14秒前
15秒前
干焱完成签到,获得积分10
15秒前
彩虹糖完成签到,获得积分10
15秒前
Lialilico完成签到,获得积分10
16秒前
18秒前
19秒前
BK_发布了新的文献求助10
19秒前
flyzhang20发布了新的文献求助30
20秒前
bkagyin应助风趣的鸭子采纳,获得10
20秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979584
求助须知:如何正确求助?哪些是违规求助? 3523532
关于积分的说明 11217894
捐赠科研通 3261031
什么是DOI,文献DOI怎么找? 1800369
邀请新用户注册赠送积分活动 879064
科研通“疑难数据库(出版商)”最低求助积分说明 807152