DSMT-Net: Dual Self-Supervised Multi-Operator Transformation for Multi-Source Endoscopic Ultrasound Diagnosis

计算机科学 人工智能 深度学习 分割 模式识别(心理学) 特征提取 转化(遗传学) 生物化学 化学 基因
作者
Jiajia Li,Ping Zhang,Teng Wang,Lei Zhu,Ruhan Liu,Xia Yang,Kaixuan Wang,Dinggang Shen,Bin Sheng
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (1): 64-75 被引量:27
标识
DOI:10.1109/tmi.2023.3289859
摘要

Pancreatic cancer has the worst prognosis of all cancers. The clinical application of endoscopic ultrasound (EUS) for the assessment of pancreatic cancer risk and of deep learning for the classification of EUS images have been hindered by inter-grader variability and labeling capability. One of the key reasons for these difficulties is that EUS images are obtained from multiple sources with varying resolutions, effective regions, and interference signals, making the distribution of the data highly variable and negatively impacting the performance of deep learning models. Additionally, manual labeling of images is time-consuming and requires significant effort, leading to the desire to effectively utilize a large amount of unlabeled data for network training. To address these challenges, this study proposes the Dual Self-supervised Multi-Operator Transformation Network (DSMT-Net) for multi-source EUS diagnosis. The DSMT-Net includes a multi-operator transformation approach to standardize the extraction of regions of interest in EUS images and eliminate irrelevant pixels. Furthermore, a transformer-based dual self-supervised network is designed to integrate unlabeled EUS images for pre-training the representation model, which can be transferred to supervised tasks such as classification, detection, and segmentation. A large-scale EUS-based pancreas image dataset (LEPset) has been collected, including 3,500 pathologically proven labeled EUS images (from pancreatic and non-pancreatic cancers) and 8,000 unlabeled EUS images for model development. The self-supervised method has also been applied to breast cancer diagnosis and was compared to state-of-the-art deep learning models on both datasets. The results demonstrate that the DSMT-Net significantly improves the accuracy of pancreatic and breast cancer diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追寻代真完成签到,获得积分10
刚刚
晓兴兴完成签到,获得积分10
刚刚
leon发布了新的文献求助10
1秒前
洽洽瓜子shine完成签到,获得积分10
1秒前
简单的大白菜真实的钥匙完成签到,获得积分10
2秒前
3秒前
一独白完成签到,获得积分10
4秒前
在水一方应助坚强的樱采纳,获得10
4秒前
慕青应助尼亚吉拉采纳,获得10
5秒前
快乐小白菜应助甜酱采纳,获得10
5秒前
5秒前
qq应助毛慢慢采纳,获得10
6秒前
6秒前
科研通AI5应助吴岳采纳,获得10
6秒前
天天快乐应助ufuon采纳,获得10
7秒前
科研通AI5应助一独白采纳,获得10
8秒前
hearts_j完成签到,获得积分10
8秒前
FashionBoy应助yasan采纳,获得10
8秒前
安琪琪完成签到,获得积分10
9秒前
9秒前
端庄千琴完成签到,获得积分10
9秒前
gaogao完成签到,获得积分10
9秒前
菲菲公主完成签到,获得积分10
10秒前
10秒前
10秒前
英姑应助柒八染采纳,获得10
11秒前
退堂鼓发布了新的文献求助10
11秒前
党弛完成签到,获得积分10
11秒前
11秒前
12秒前
烂漫的松完成签到,获得积分10
12秒前
cheryl完成签到,获得积分10
12秒前
笑笑发布了新的文献求助10
13秒前
14秒前
15秒前
糟糕的霆完成签到 ,获得积分10
15秒前
婷婷发布了新的文献求助10
15秒前
15秒前
Anxinxin发布了新的文献求助10
15秒前
CipherSage应助xyz采纳,获得10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762