DSMT-Net: Dual Self-Supervised Multi-Operator Transformation for Multi-Source Endoscopic Ultrasound Diagnosis

计算机科学 人工智能 深度学习 分割 模式识别(心理学) 特征提取 转化(遗传学) 生物化学 化学 基因
作者
Jiajia Li,Ping Zhang,Teng Wang,Lei Zhu,Ruhan Liu,Xia Yang,Kaixuan Wang,Dinggang Shen,Bin Sheng
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (1): 64-75 被引量:27
标识
DOI:10.1109/tmi.2023.3289859
摘要

Pancreatic cancer has the worst prognosis of all cancers. The clinical application of endoscopic ultrasound (EUS) for the assessment of pancreatic cancer risk and of deep learning for the classification of EUS images have been hindered by inter-grader variability and labeling capability. One of the key reasons for these difficulties is that EUS images are obtained from multiple sources with varying resolutions, effective regions, and interference signals, making the distribution of the data highly variable and negatively impacting the performance of deep learning models. Additionally, manual labeling of images is time-consuming and requires significant effort, leading to the desire to effectively utilize a large amount of unlabeled data for network training. To address these challenges, this study proposes the Dual Self-supervised Multi-Operator Transformation Network (DSMT-Net) for multi-source EUS diagnosis. The DSMT-Net includes a multi-operator transformation approach to standardize the extraction of regions of interest in EUS images and eliminate irrelevant pixels. Furthermore, a transformer-based dual self-supervised network is designed to integrate unlabeled EUS images for pre-training the representation model, which can be transferred to supervised tasks such as classification, detection, and segmentation. A large-scale EUS-based pancreas image dataset (LEPset) has been collected, including 3,500 pathologically proven labeled EUS images (from pancreatic and non-pancreatic cancers) and 8,000 unlabeled EUS images for model development. The self-supervised method has also been applied to breast cancer diagnosis and was compared to state-of-the-art deep learning models on both datasets. The results demonstrate that the DSMT-Net significantly improves the accuracy of pancreatic and breast cancer diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gu关闭了Gu文献求助
1秒前
2秒前
蜡笔驳回了Yang应助
3秒前
顺其自然_666888完成签到,获得积分10
3秒前
Carpe47发布了新的文献求助10
3秒前
无花果应助sara采纳,获得10
4秒前
5秒前
华仔应助娃娃菜采纳,获得10
5秒前
Feng发布了新的文献求助20
7秒前
7秒前
7秒前
13秒前
Gu完成签到,获得积分10
14秒前
15秒前
郭先森3316发布了新的文献求助20
15秒前
16秒前
curtisness应助小铭同学采纳,获得10
16秒前
17秒前
xjw关闭了xjw文献求助
18秒前
YWL完成签到,获得积分10
18秒前
会飞的猪完成签到,获得积分10
19秒前
19秒前
19秒前
嗯哼发布了新的文献求助10
20秒前
Carpe47发布了新的文献求助10
20秒前
花痴的小松鼠完成签到 ,获得积分10
22秒前
Yang应助hola采纳,获得10
22秒前
虚心盼晴发布了新的文献求助10
23秒前
Jasper应助会飞的猪采纳,获得10
26秒前
努力的璇子完成签到,获得积分10
26秒前
科研通AI2S应助一颗柠檬采纳,获得10
26秒前
26秒前
27秒前
WATeam完成签到,获得积分0
28秒前
29秒前
helo完成签到,获得积分10
29秒前
科研通AI2S应助嗯哼采纳,获得10
30秒前
30秒前
lxr8900发布了新的文献求助10
31秒前
T9的梦完成签到,获得积分0
32秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
中国荞麦品种志 1000
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3358641
求助须知:如何正确求助?哪些是违规求助? 2981750
关于积分的说明 8700446
捐赠科研通 2663412
什么是DOI,文献DOI怎么找? 1458452
科研通“疑难数据库(出版商)”最低求助积分说明 675116
邀请新用户注册赠送积分活动 666160