DSMT-Net: Dual Self-Supervised Multi-Operator Transformation for Multi-Source Endoscopic Ultrasound Diagnosis

计算机科学 人工智能 深度学习 分割 模式识别(心理学) 特征提取 转化(遗传学) 生物化学 基因 化学
作者
Jiajia Li,Ping Zhang,Teng Wang,Lei Zhu,Ruhan Liu,Xia Yang,Kaixuan Wang,Dinggang Shen,Bin Sheng
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (1): 64-75 被引量:27
标识
DOI:10.1109/tmi.2023.3289859
摘要

Pancreatic cancer has the worst prognosis of all cancers. The clinical application of endoscopic ultrasound (EUS) for the assessment of pancreatic cancer risk and of deep learning for the classification of EUS images have been hindered by inter-grader variability and labeling capability. One of the key reasons for these difficulties is that EUS images are obtained from multiple sources with varying resolutions, effective regions, and interference signals, making the distribution of the data highly variable and negatively impacting the performance of deep learning models. Additionally, manual labeling of images is time-consuming and requires significant effort, leading to the desire to effectively utilize a large amount of unlabeled data for network training. To address these challenges, this study proposes the Dual Self-supervised Multi-Operator Transformation Network (DSMT-Net) for multi-source EUS diagnosis. The DSMT-Net includes a multi-operator transformation approach to standardize the extraction of regions of interest in EUS images and eliminate irrelevant pixels. Furthermore, a transformer-based dual self-supervised network is designed to integrate unlabeled EUS images for pre-training the representation model, which can be transferred to supervised tasks such as classification, detection, and segmentation. A large-scale EUS-based pancreas image dataset (LEPset) has been collected, including 3,500 pathologically proven labeled EUS images (from pancreatic and non-pancreatic cancers) and 8,000 unlabeled EUS images for model development. The self-supervised method has also been applied to breast cancer diagnosis and was compared to state-of-the-art deep learning models on both datasets. The results demonstrate that the DSMT-Net significantly improves the accuracy of pancreatic and breast cancer diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
善学以致用应助1234采纳,获得10
1秒前
智勇双全完成签到,获得积分10
1秒前
kk关闭了kk文献求助
1秒前
吴1完成签到,获得积分10
2秒前
liwei发布了新的文献求助10
3秒前
3秒前
zxm发布了新的文献求助10
4秒前
Pooh发布了新的文献求助10
4秒前
4秒前
小xy完成签到,获得积分10
5秒前
5秒前
Lucas应助666采纳,获得10
5秒前
Moriarty完成签到,获得积分10
5秒前
kingwill应助肯瑞恩哭哭采纳,获得20
6秒前
Ivy完成签到,获得积分10
6秒前
科研通AI6应助Dream采纳,获得10
7秒前
莉莉完成签到,获得积分10
7秒前
今后应助大神装采纳,获得10
7秒前
揽星完成签到,获得积分10
7秒前
7秒前
清脆如娆完成签到 ,获得积分10
7秒前
zzzzz完成签到,获得积分10
8秒前
meddy完成签到,获得积分10
8秒前
8秒前
zy完成签到,获得积分10
9秒前
lllu发布了新的文献求助10
9秒前
迷失的杰克完成签到 ,获得积分10
10秒前
喻初原发布了新的文献求助10
10秒前
南宫映榕完成签到,获得积分10
10秒前
赘婿应助yk采纳,获得10
10秒前
Winfred发布了新的文献求助10
11秒前
微笑芒果完成签到 ,获得积分0
11秒前
默默的过客完成签到,获得积分10
11秒前
cc413完成签到,获得积分20
11秒前
11秒前
吕君完成签到,获得积分10
12秒前
外向的如冰完成签到,获得积分10
13秒前
梦C2发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5326463
求助须知:如何正确求助?哪些是违规求助? 4466690
关于积分的说明 13897795
捐赠科研通 4359057
什么是DOI,文献DOI怎么找? 2394428
邀请新用户注册赠送积分活动 1387937
关于科研通互助平台的介绍 1358802