DSMT-Net: Dual Self-Supervised Multi-Operator Transformation for Multi-Source Endoscopic Ultrasound Diagnosis

计算机科学 人工智能 深度学习 分割 模式识别(心理学) 特征提取 转化(遗传学) 生物化学 基因 化学
作者
Jiajia Li,Ping Zhang,Teng Wang,Lei Zhu,Ruhan Liu,Xia Yang,Kaixuan Wang,Dinggang Shen,Bin Sheng
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (1): 64-75 被引量:27
标识
DOI:10.1109/tmi.2023.3289859
摘要

Pancreatic cancer has the worst prognosis of all cancers. The clinical application of endoscopic ultrasound (EUS) for the assessment of pancreatic cancer risk and of deep learning for the classification of EUS images have been hindered by inter-grader variability and labeling capability. One of the key reasons for these difficulties is that EUS images are obtained from multiple sources with varying resolutions, effective regions, and interference signals, making the distribution of the data highly variable and negatively impacting the performance of deep learning models. Additionally, manual labeling of images is time-consuming and requires significant effort, leading to the desire to effectively utilize a large amount of unlabeled data for network training. To address these challenges, this study proposes the Dual Self-supervised Multi-Operator Transformation Network (DSMT-Net) for multi-source EUS diagnosis. The DSMT-Net includes a multi-operator transformation approach to standardize the extraction of regions of interest in EUS images and eliminate irrelevant pixels. Furthermore, a transformer-based dual self-supervised network is designed to integrate unlabeled EUS images for pre-training the representation model, which can be transferred to supervised tasks such as classification, detection, and segmentation. A large-scale EUS-based pancreas image dataset (LEPset) has been collected, including 3,500 pathologically proven labeled EUS images (from pancreatic and non-pancreatic cancers) and 8,000 unlabeled EUS images for model development. The self-supervised method has also been applied to breast cancer diagnosis and was compared to state-of-the-art deep learning models on both datasets. The results demonstrate that the DSMT-Net significantly improves the accuracy of pancreatic and breast cancer diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助景飞丹采纳,获得10
1秒前
HJJHJH发布了新的文献求助20
1秒前
萤火虫完成签到,获得积分10
2秒前
香蕉觅云应助f1mike110采纳,获得10
2秒前
Jovie7完成签到,获得积分10
2秒前
cc发布了新的文献求助10
3秒前
3秒前
量子星尘发布了新的文献求助10
7秒前
Koalas举报甜橙求助涉嫌违规
8秒前
9秒前
可爱半凡发布了新的文献求助10
9秒前
爱吃五花肉完成签到,获得积分10
9秒前
陶醉的觅夏完成签到,获得积分10
11秒前
会有那么一天完成签到,获得积分10
11秒前
Lucas应助HJJHJH采纳,获得10
11秒前
12秒前
风中莫英完成签到,获得积分10
12秒前
14秒前
Hexagram发布了新的文献求助10
14秒前
15秒前
小马甲应助火星上的诗兰采纳,获得10
18秒前
可爱半凡完成签到,获得积分10
18秒前
HanFeiZi发布了新的文献求助10
19秒前
19秒前
20秒前
21秒前
21秒前
李小乙完成签到 ,获得积分10
22秒前
XY12138发布了新的文献求助10
23秒前
羊羊羊发布了新的文献求助10
24秒前
乐观的问旋完成签到,获得积分20
24秒前
24秒前
量子星尘发布了新的文献求助50
25秒前
santley发布了新的文献求助10
26秒前
26秒前
26秒前
27秒前
27秒前
27秒前
30秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125432
求助须知:如何正确求助?哪些是违规求助? 4329244
关于积分的说明 13490706
捐赠科研通 4164104
什么是DOI,文献DOI怎么找? 2282779
邀请新用户注册赠送积分活动 1283854
关于科研通互助平台的介绍 1223137