De novo design of protein structure and function with RFdiffusion

蛋白质设计 计算机科学 蛋白质工程 蛋白质结构 深度学习 结构母题 生成设计 人工智能 化学 材料科学 生物化学 相容性(地球化学) 复合材料
作者
Joseph L. Watson,David Juergens,Nathaniel R. Bennett,Brian L. Trippe,Jason Yim,Helen E. Eisenach,Woody Ahern,Andrew J. Borst,Robert J. Ragotte,Lukas F. Milles,Basile I. M. Wicky,Nikita Hanikel,Samuel J. Pellock,Alexis Courbet,William Sheffler,Jue Wang,Preetham Venkatesh,Isaac Sappington,Susana Vázquez Torres,Anna Lauko
出处
期刊:Nature [Springer Nature]
卷期号:620 (7976): 1089-1100 被引量:1314
标识
DOI:10.1038/s41586-023-06415-8
摘要

Abstract There has been considerable recent progress in designing new proteins using deep-learning methods 1–9 . Despite this progress, a general deep-learning framework for protein design that enables solution of a wide range of design challenges, including de novo binder design and design of higher-order symmetric architectures, has yet to be described. Diffusion models 10,11 have had considerable success in image and language generative modelling but limited success when applied to protein modelling, probably due to the complexity of protein backbone geometry and sequence–structure relationships. Here we show that by fine-tuning the RoseTTAFold structure prediction network on protein structure denoising tasks, we obtain a generative model of protein backbones that achieves outstanding performance on unconditional and topology-constrained protein monomer design, protein binder design, symmetric oligomer design, enzyme active site scaffolding and symmetric motif scaffolding for therapeutic and metal-binding protein design. We demonstrate the power and generality of the method, called RoseTTAFold diffusion (RFdiffusion), by experimentally characterizing the structures and functions of hundreds of designed symmetric assemblies, metal-binding proteins and protein binders. The accuracy of RFdiffusion is confirmed by the cryogenic electron microscopy structure of a designed binder in complex with influenza haemagglutinin that is nearly identical to the design model. In a manner analogous to networks that produce images from user-specified inputs, RFdiffusion enables the design of diverse functional proteins from simple molecular specifications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6666发布了新的文献求助10
刚刚
Crystal完成签到,获得积分10
刚刚
刚刚
Zhangll发布了新的文献求助10
1秒前
log完成签到,获得积分10
1秒前
王灰灰1完成签到,获得积分10
1秒前
妤懿完成签到 ,获得积分10
2秒前
2秒前
2秒前
舒心半梦发布了新的文献求助10
3秒前
艾扎克发布了新的文献求助10
3秒前
含糊的寇完成签到,获得积分10
3秒前
充电宝应助CYC采纳,获得10
5秒前
搜集达人应助小包包采纳,获得10
5秒前
6秒前
SciGPT应助cnulee采纳,获得10
6秒前
6秒前
6秒前
CodeCraft应助小刘医生采纳,获得10
6秒前
领导范儿应助范啦啦啦采纳,获得30
6秒前
7秒前
8秒前
nmamtf发布了新的文献求助10
8秒前
震动的沛山应助一一采纳,获得10
9秒前
满意的伊发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
xia发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
阿宋发布了新的文献求助10
12秒前
LMJ发布了新的文献求助10
12秒前
13秒前
13秒前
llb完成签到,获得积分10
13秒前
哈哈哈发布了新的文献求助10
14秒前
潇笑发布了新的文献求助10
14秒前
geyuanhong完成签到,获得积分10
15秒前
17秒前
啊啊啊啊发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469432
求助须知:如何正确求助?哪些是违规求助? 4572532
关于积分的说明 14336014
捐赠科研通 4499397
什么是DOI,文献DOI怎么找? 2465032
邀请新用户注册赠送积分活动 1453564
关于科研通互助平台的介绍 1428091