De novo design of protein structure and function with RFdiffusion

蛋白质设计 计算机科学 蛋白质工程 蛋白质结构 深度学习 结构母题 生成设计 人工智能 化学 材料科学 生物化学 相容性(地球化学) 复合材料
作者
Joseph L. Watson,David Juergens,Nathaniel R. Bennett,Brian L. Trippe,Jason Yim,Helen E. Eisenach,Woody Ahern,Andrew J. Borst,Robert J. Ragotte,Lukas F. Milles,Basile I. M. Wicky,Nikita Hanikel,Samuel J. Pellock,Alexis Courbet,William Sheffler,Jue Wang,Preetham Venkatesh,Isaac Sappington,Susana Vázquez Torres,Anna Lauko,Valentin De Bortoli,Émile Mathieu,Sergey Ovchinnikov,Regina Barzilay,Tommi Jaakkola,Frank DiMaio,Minkyung Baek,David Baker
出处
期刊:Nature [Springer Nature]
卷期号:620 (7976): 1089-1100 被引量:472
标识
DOI:10.1038/s41586-023-06415-8
摘要

Abstract There has been considerable recent progress in designing new proteins using deep-learning methods 1–9 . Despite this progress, a general deep-learning framework for protein design that enables solution of a wide range of design challenges, including de novo binder design and design of higher-order symmetric architectures, has yet to be described. Diffusion models 10,11 have had considerable success in image and language generative modelling but limited success when applied to protein modelling, probably due to the complexity of protein backbone geometry and sequence–structure relationships. Here we show that by fine-tuning the RoseTTAFold structure prediction network on protein structure denoising tasks, we obtain a generative model of protein backbones that achieves outstanding performance on unconditional and topology-constrained protein monomer design, protein binder design, symmetric oligomer design, enzyme active site scaffolding and symmetric motif scaffolding for therapeutic and metal-binding protein design. We demonstrate the power and generality of the method, called RoseTTAFold diffusion (RFdiffusion), by experimentally characterizing the structures and functions of hundreds of designed symmetric assemblies, metal-binding proteins and protein binders. The accuracy of RFdiffusion is confirmed by the cryogenic electron microscopy structure of a designed binder in complex with influenza haemagglutinin that is nearly identical to the design model. In a manner analogous to networks that produce images from user-specified inputs, RFdiffusion enables the design of diverse functional proteins from simple molecular specifications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI2S应助wjq采纳,获得10
刚刚
研友_nxer7Z发布了新的文献求助10
1秒前
1秒前
1秒前
Ava应助研友_5476B5采纳,获得30
1秒前
星沉静默发布了新的文献求助10
2秒前
澍L发布了新的文献求助10
3秒前
桐桐应助曾经豌豆采纳,获得10
3秒前
3秒前
坚强的铅笔完成签到 ,获得积分10
3秒前
aaa完成签到,获得积分20
4秒前
4秒前
可爱的函函应助wwww采纳,获得10
5秒前
今后应助LuLan0401采纳,获得10
6秒前
赘婿应助范先生采纳,获得10
6秒前
7秒前
好困应助ice7采纳,获得20
7秒前
K1481691完成签到,获得积分10
7秒前
YANGMJ完成签到,获得积分10
7秒前
研友_VZG7GZ应助十三采纳,获得10
7秒前
落后的纸鹤完成签到,获得积分10
8秒前
8letters发布了新的文献求助10
8秒前
8秒前
传奇3应助紫禁城的雪天采纳,获得10
10秒前
11秒前
SZK发布了新的文献求助10
11秒前
12秒前
卫化蛹完成签到,获得积分20
12秒前
12秒前
852应助Ge采纳,获得10
13秒前
15秒前
15秒前
16秒前
17秒前
dd完成签到,获得积分10
17秒前
gayfall完成签到,获得积分10
17秒前
wwww发布了新的文献求助10
17秒前
18秒前
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148466
求助须知:如何正确求助?哪些是违规求助? 2799588
关于积分的说明 7836005
捐赠科研通 2456991
什么是DOI,文献DOI怎么找? 1307679
科研通“疑难数据库(出版商)”最低求助积分说明 628245
版权声明 601655