De novo design of protein structure and function with RFdiffusion

蛋白质设计 计算机科学 蛋白质工程 蛋白质结构 深度学习 结构母题 生成设计 人工智能 化学 材料科学 生物化学 复合材料 相容性(地球化学)
作者
Joseph L. Watson,David Juergens,Nathaniel R. Bennett,Brian L. Trippe,Jason Yim,Helen E. Eisenach,Woody Ahern,Andrew J. Borst,Robert J. Ragotte,Lukas F. Milles,Basile I. M. Wicky,Nikita Hanikel,Samuel J. Pellock,Alexis Courbet,William Sheffler,Jue Wang,Preetham Venkatesh,Isaac Sappington,Susana Vázquez Torres,Anna Lauko
出处
期刊:Nature [Springer Nature]
卷期号:620 (7976): 1089-1100 被引量:1366
标识
DOI:10.1038/s41586-023-06415-8
摘要

Abstract There has been considerable recent progress in designing new proteins using deep-learning methods 1–9 . Despite this progress, a general deep-learning framework for protein design that enables solution of a wide range of design challenges, including de novo binder design and design of higher-order symmetric architectures, has yet to be described. Diffusion models 10,11 have had considerable success in image and language generative modelling but limited success when applied to protein modelling, probably due to the complexity of protein backbone geometry and sequence–structure relationships. Here we show that by fine-tuning the RoseTTAFold structure prediction network on protein structure denoising tasks, we obtain a generative model of protein backbones that achieves outstanding performance on unconditional and topology-constrained protein monomer design, protein binder design, symmetric oligomer design, enzyme active site scaffolding and symmetric motif scaffolding for therapeutic and metal-binding protein design. We demonstrate the power and generality of the method, called RoseTTAFold diffusion (RFdiffusion), by experimentally characterizing the structures and functions of hundreds of designed symmetric assemblies, metal-binding proteins and protein binders. The accuracy of RFdiffusion is confirmed by the cryogenic electron microscopy structure of a designed binder in complex with influenza haemagglutinin that is nearly identical to the design model. In a manner analogous to networks that produce images from user-specified inputs, RFdiffusion enables the design of diverse functional proteins from simple molecular specifications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sue完成签到 ,获得积分10
1秒前
sunc发布了新的文献求助10
4秒前
科研小菜完成签到 ,获得积分10
4秒前
SPark发布了新的文献求助10
5秒前
6秒前
嘿嘿应助陈研生采纳,获得10
6秒前
Lasse发布了新的文献求助10
7秒前
眯眯眼的宛白完成签到,获得积分20
9秒前
11秒前
我崽了你发布了新的文献求助30
12秒前
13秒前
fanf完成签到,获得积分10
14秒前
完美世界应助mayun95采纳,获得10
15秒前
量子星尘发布了新的文献求助10
16秒前
ashin17发布了新的文献求助10
18秒前
18秒前
科研通AI2S应助cxw采纳,获得10
20秒前
20秒前
呼噜呼噜毛完成签到 ,获得积分10
22秒前
22秒前
烟花应助QinQin采纳,获得10
22秒前
JamesPei应助猪猪hero采纳,获得10
23秒前
23秒前
24秒前
黄颖完成签到,获得积分10
24秒前
26秒前
27秒前
CodeCraft应助Nora采纳,获得10
28秒前
灵巧帽子发布了新的文献求助20
29秒前
小吴同学发布了新的文献求助10
31秒前
黄芪2号完成签到,获得积分10
31秒前
31秒前
31秒前
Jes完成签到,获得积分10
32秒前
凶狠的棒棒糖关注了科研通微信公众号
32秒前
谦让雨柏完成签到 ,获得积分10
32秒前
32秒前
33秒前
33秒前
黄芪2号发布了新的文献求助10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637910
求助须知:如何正确求助?哪些是违规求助? 4744414
关于积分的说明 15000761
捐赠科研通 4796111
什么是DOI,文献DOI怎么找? 2562349
邀请新用户注册赠送积分活动 1521868
关于科研通互助平台的介绍 1481716