De novo design of protein structure and function with RFdiffusion

蛋白质设计 计算机科学 蛋白质工程 蛋白质结构 深度学习 结构母题 生成设计 人工智能 化学 材料科学 生物化学 相容性(地球化学) 复合材料
作者
Joseph L. Watson,David Juergens,Nathaniel R. Bennett,Brian L. Trippe,Jason Yim,Helen E. Eisenach,Woody Ahern,Andrew J. Borst,Robert J. Ragotte,Lukas F. Milles,Basile I. M. Wicky,Nikita Hanikel,Samuel J. Pellock,Alexis Courbet,William Sheffler,Jue Wang,Preetham Venkatesh,Isaac Sappington,Susana Vázquez Torres,Anna Lauko
出处
期刊:Nature [Nature Portfolio]
卷期号:620 (7976): 1089-1100 被引量:1009
标识
DOI:10.1038/s41586-023-06415-8
摘要

Abstract There has been considerable recent progress in designing new proteins using deep-learning methods 1–9 . Despite this progress, a general deep-learning framework for protein design that enables solution of a wide range of design challenges, including de novo binder design and design of higher-order symmetric architectures, has yet to be described. Diffusion models 10,11 have had considerable success in image and language generative modelling but limited success when applied to protein modelling, probably due to the complexity of protein backbone geometry and sequence–structure relationships. Here we show that by fine-tuning the RoseTTAFold structure prediction network on protein structure denoising tasks, we obtain a generative model of protein backbones that achieves outstanding performance on unconditional and topology-constrained protein monomer design, protein binder design, symmetric oligomer design, enzyme active site scaffolding and symmetric motif scaffolding for therapeutic and metal-binding protein design. We demonstrate the power and generality of the method, called RoseTTAFold diffusion (RFdiffusion), by experimentally characterizing the structures and functions of hundreds of designed symmetric assemblies, metal-binding proteins and protein binders. The accuracy of RFdiffusion is confirmed by the cryogenic electron microscopy structure of a designed binder in complex with influenza haemagglutinin that is nearly identical to the design model. In a manner analogous to networks that produce images from user-specified inputs, RFdiffusion enables the design of diverse functional proteins from simple molecular specifications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小马甲应助liu采纳,获得10
1秒前
1秒前
1234完成签到 ,获得积分10
1秒前
菲尼克斯完成签到,获得积分10
2秒前
清辉月凝完成签到,获得积分20
2秒前
nczpf2010完成签到,获得积分10
2秒前
xm完成签到,获得积分10
3秒前
燕子发布了新的文献求助10
3秒前
3秒前
mm发布了新的文献求助30
4秒前
123123123发布了新的文献求助10
4秒前
小吴发布了新的文献求助10
4秒前
大力完成签到,获得积分10
4秒前
土豪的严青完成签到,获得积分10
5秒前
忧伤的信封完成签到 ,获得积分10
5秒前
阿空完成签到 ,获得积分10
5秒前
王伟娜完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
火星上的万天完成签到,获得积分10
7秒前
menlixue完成签到,获得积分10
8秒前
9秒前
超脱完成签到,获得积分10
9秒前
海棠朵朵完成签到 ,获得积分10
9秒前
共享精神应助酒洲采纳,获得10
10秒前
夜休2024给夜休2024的求助进行了留言
11秒前
11秒前
edenz发布了新的文献求助10
11秒前
熙悦发布了新的文献求助10
11秒前
坦率抽屉完成签到 ,获得积分10
12秒前
humeme完成签到,获得积分10
12秒前
木子李完成签到,获得积分10
12秒前
zyf发布了新的文献求助10
12秒前
baiye发布了新的文献求助10
13秒前
赘婿应助xm采纳,获得10
14秒前
小熊熊完成签到 ,获得积分10
14秒前
sss发布了新的文献求助30
14秒前
researcher发布了新的文献求助10
14秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Oxford Learner's Pocket Word Skills 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5152744
求助须知:如何正确求助?哪些是违规求助? 4348447
关于积分的说明 13539462
捐赠科研通 4190930
什么是DOI,文献DOI怎么找? 2298449
邀请新用户注册赠送积分活动 1298620
关于科研通互助平台的介绍 1243464