De novo design of protein structure and function with RFdiffusion

蛋白质设计 计算机科学 蛋白质工程 蛋白质结构 深度学习 结构母题 生成设计 人工智能 化学 材料科学 生物化学 复合材料 相容性(地球化学)
作者
Joseph L. Watson,David Juergens,Nathaniel R. Bennett,Brian L. Trippe,Jason Yim,Helen E. Eisenach,Woody Ahern,Andrew J. Borst,Robert J. Ragotte,Lukas F. Milles,Basile I. M. Wicky,Nikita Hanikel,Samuel J. Pellock,Alexis Courbet,William Sheffler,Jue Wang,Preetham Venkatesh,Isaac Sappington,Susana Vázquez Torres,Anna Lauko
出处
期刊:Nature [Springer Nature]
卷期号:620 (7976): 1089-1100 被引量:1366
标识
DOI:10.1038/s41586-023-06415-8
摘要

Abstract There has been considerable recent progress in designing new proteins using deep-learning methods 1–9 . Despite this progress, a general deep-learning framework for protein design that enables solution of a wide range of design challenges, including de novo binder design and design of higher-order symmetric architectures, has yet to be described. Diffusion models 10,11 have had considerable success in image and language generative modelling but limited success when applied to protein modelling, probably due to the complexity of protein backbone geometry and sequence–structure relationships. Here we show that by fine-tuning the RoseTTAFold structure prediction network on protein structure denoising tasks, we obtain a generative model of protein backbones that achieves outstanding performance on unconditional and topology-constrained protein monomer design, protein binder design, symmetric oligomer design, enzyme active site scaffolding and symmetric motif scaffolding for therapeutic and metal-binding protein design. We demonstrate the power and generality of the method, called RoseTTAFold diffusion (RFdiffusion), by experimentally characterizing the structures and functions of hundreds of designed symmetric assemblies, metal-binding proteins and protein binders. The accuracy of RFdiffusion is confirmed by the cryogenic electron microscopy structure of a designed binder in complex with influenza haemagglutinin that is nearly identical to the design model. In a manner analogous to networks that produce images from user-specified inputs, RFdiffusion enables the design of diverse functional proteins from simple molecular specifications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐天阳完成签到,获得积分10
刚刚
刚刚
打打应助木木采纳,获得10
刚刚
caicai发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
白安穗发布了新的文献求助10
1秒前
江月年发布了新的文献求助10
1秒前
搞笑5次发布了新的文献求助10
1秒前
佳仪完成签到 ,获得积分10
1秒前
2秒前
Akim应助菠萝冰采纳,获得10
2秒前
yyyyyggggg完成签到,获得积分10
2秒前
Music完成签到,获得积分10
2秒前
完美世界应助xiaowang采纳,获得10
2秒前
3秒前
大气怜南发布了新的文献求助20
3秒前
3秒前
3秒前
3秒前
TANGGUO应助冷眸采纳,获得10
4秒前
LUJU发布了新的文献求助30
4秒前
单纯的泥猴桃应助123采纳,获得10
4秒前
4秒前
俊逸冬天发布了新的文献求助10
5秒前
Stella应助希格玻色子采纳,获得10
5秒前
wanci应助学术的裁缝采纳,获得10
5秒前
山青水秀发布了新的文献求助10
5秒前
GG发布了新的文献求助10
5秒前
我是老大应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
MrYang完成签到,获得积分10
5秒前
yulinhai发布了新的文献求助10
6秒前
默问应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
Hilda007应助科研通管家采纳,获得10
6秒前
天天快乐应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得30
6秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588003
求助须知:如何正确求助?哪些是违规求助? 4671093
关于积分的说明 14785596
捐赠科研通 4624167
什么是DOI,文献DOI怎么找? 2531527
邀请新用户注册赠送积分活动 1500191
关于科研通互助平台的介绍 1468200