Dual Self-Attention Swin Transformer for Hyperspectral Image Super-Resolution

高光谱成像 计算机科学 人工智能 图像分辨率 遥感 模式识别(心理学) 卷积神经网络 计算机视觉 图像质量 图像(数学) 地质学
作者
Yaqian Long,Xun Wang,Meng Xu,Shuyu Zhang,Shuguo Jiang,Sen Jia
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-12 被引量:34
标识
DOI:10.1109/tgrs.2023.3275146
摘要

Spatial resolution is a crucial indicator for measuring the quality of hyperspectral imaging (HSI) and obtaining high-resolution (HR) hyperspectral images without any auxiliary information has become increasingly challenging. One promising approach is to use deep-learning (DL) techniques to reconstruct HR hyperspectral images from low-resolution (LR) images, namely super-resolution (SR). While convolutional neural networks are commonly used for hyperspectral image SR (HSI-SR), they often lead to unavoidable performance degradation due to the lack of long-range dependence learning ability. In this article, we propose a dual self-attention Swin transformer SR (DSSTSR) network that utilizes the ability of the shifted windows (Swin) transformer in the spatial representation of both global and local features and learns spectral sequence information from adjacent bands of HSI. Additionally, DSSTSR incorporates an image denoising module using the wavelet transformation method to mitigate the impact of stripe noise on HSI-SR. Our extensive experiments using publicly close-range datasets demonstrate that DSSTSR outperforms other state-of-art HSI-SR methods in terms of three image quality metrics. Furthermore, we applied DSSTSR to the SR of satellite hyperspectral images and achieved improved classification results. Compared to its competitors, DSSTSR exhibits superior performance in enhancing spatial resolution while preserving spectral information. These results suggest that the DSSTSR network has great potential for standardization in remote-sensing image processing and practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
善学以致用应助666采纳,获得10
1秒前
宋博文完成签到,获得积分10
2秒前
欢喜怀绿完成签到,获得积分10
3秒前
4秒前
4秒前
共享精神应助smldx采纳,获得10
4秒前
Always完成签到,获得积分10
5秒前
5秒前
memedaaaah发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
7秒前
平常的迎夏完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
隐形曼青应助秋澄采纳,获得10
9秒前
9秒前
11秒前
xzn发布了新的文献求助10
11秒前
hahaha发布了新的文献求助10
11秒前
11秒前
青云冰城发布了新的文献求助10
12秒前
oo发布了新的文献求助10
12秒前
12秒前
不倒翁37发布了新的文献求助10
13秒前
cmdan完成签到,获得积分10
13秒前
蓝溺完成签到,获得积分10
14秒前
邵小庆发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
桐桐应助cc采纳,获得10
16秒前
等待吐司应助欢喜代萱采纳,获得10
16秒前
ss完成签到 ,获得积分10
16秒前
刘乐发布了新的文献求助10
16秒前
柳觅夏发布了新的文献求助10
16秒前
Lucas应助芜湖芜湖采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264674
求助须知:如何正确求助?哪些是违规求助? 4424909
关于积分的说明 13774672
捐赠科研通 4300019
什么是DOI,文献DOI怎么找? 2359586
邀请新用户注册赠送积分活动 1355696
关于科研通互助平台的介绍 1316961