Dual Self-Attention Swin Transformer for Hyperspectral Image Super-Resolution

高光谱成像 计算机科学 人工智能 图像分辨率 遥感 模式识别(心理学) 卷积神经网络 计算机视觉 图像质量 图像(数学) 地质学
作者
Yaqian Long,Xun Wang,Meng Xu,Shuyu Zhang,Shuguo Jiang,Sen Jia
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-12 被引量:28
标识
DOI:10.1109/tgrs.2023.3275146
摘要

Spatial resolution is a crucial indicator for measuring the quality of hyperspectral imaging (HSI) and obtaining high-resolution (HR) hyperspectral images without any auxiliary information has become increasingly challenging. One promising approach is to use deep-learning (DL) techniques to reconstruct HR hyperspectral images from low-resolution (LR) images, namely super-resolution (SR). While convolutional neural networks are commonly used for hyperspectral image SR (HSI-SR), they often lead to unavoidable performance degradation due to the lack of long-range dependence learning ability. In this article, we propose a dual self-attention Swin transformer SR (DSSTSR) network that utilizes the ability of the shifted windows (Swin) transformer in the spatial representation of both global and local features and learns spectral sequence information from adjacent bands of HSI. Additionally, DSSTSR incorporates an image denoising module using the wavelet transformation method to mitigate the impact of stripe noise on HSI-SR. Our extensive experiments using publicly close-range datasets demonstrate that DSSTSR outperforms other state-of-art HSI-SR methods in terms of three image quality metrics. Furthermore, we applied DSSTSR to the SR of satellite hyperspectral images and achieved improved classification results. Compared to its competitors, DSSTSR exhibits superior performance in enhancing spatial resolution while preserving spectral information. These results suggest that the DSSTSR network has great potential for standardization in remote-sensing image processing and practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助zuijiasunyou采纳,获得10
1秒前
anan完成签到 ,获得积分10
1秒前
1秒前
peach完成签到,获得积分20
3秒前
4秒前
lingling发布了新的文献求助10
4秒前
4秒前
关琦完成签到,获得积分10
4秒前
5秒前
5秒前
自由大树完成签到,获得积分10
5秒前
nature发布了新的文献求助10
5秒前
凌菲发布了新的文献求助10
5秒前
6秒前
123应助Andy采纳,获得30
6秒前
Samuel完成签到,获得积分10
6秒前
6秒前
7秒前
mTOR发布了新的文献求助10
7秒前
CYX发布了新的文献求助10
8秒前
诗图发布了新的文献求助10
8秒前
七七发布了新的文献求助10
9秒前
BABY五齿发布了新的文献求助10
10秒前
10秒前
11秒前
张亚召完成签到 ,获得积分10
11秒前
11秒前
12秒前
12秒前
kk2024完成签到,获得积分10
13秒前
psybrain9527发布了新的文献求助20
14秒前
14秒前
14秒前
mTOR完成签到,获得积分10
14秒前
15秒前
15秒前
Z137558423完成签到,获得积分10
15秒前
暴躁的储发布了新的文献求助10
16秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4556575
求助须知:如何正确求助?哪些是违规求助? 3984605
关于积分的说明 12336313
捐赠科研通 3654594
什么是DOI,文献DOI怎么找? 2013241
邀请新用户注册赠送积分活动 1048230
科研通“疑难数据库(出版商)”最低求助积分说明 936624