已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Peduncle collision-free grasping based on deep reinforcement learning for tomato harvesting robot

花序梗(解剖学) 强化学习 人工智能 机器人 启发式 机器人末端执行器 计算机科学 计算机视觉 模拟 碰撞 功能(生物学) 控制理论(社会学) 生物 植物 计算机安全 控制(管理) 进化生物学
作者
Yajun Li,Qingchun Feng,Yifan Zhang,Chuanlang Peng,Yuhang Ma,Cheng Liu,Mengfei Ru,Jiahui Sun,Chunjiang Zhao
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:216: 108488-108488 被引量:35
标识
DOI:10.1016/j.compag.2023.108488
摘要

Collision-free grasping of the thin, brief peduncles connecting cherry tomato clusters to the main stem was crucial for tomato harvesting robots. Recognizing that the optimal operating posture for each individual peduncle was various, this study proposed a novel peduncle grasping posture decision model using deep reinforcement learning (DRL) for tomato harvesting manipulators, to overcome the collision issue caused by fixed-posture grasping. This model could dynamically generated action sequences for the harvesting manipulator, ensuring that the end-effector approach to the peduncle along the collision-free path with the optimal grasping posture. Building upon prior research into the multi-task identification of tomato clusters, peduncles, and the main stem, a keypoint-based spatial pose description model for tomato bunches was devised. Through this, the optimal operating posture for the end-effector on the peduncle was established. An improved HER-SAC (Soft Actor Critic with Hindsight Experience Replay) algorithm was subsequently established to guide the end-effector in collision-free grasping motions. The reward function of this algorithm incorporated end-effector posture constraints obtained from the optimal posture plane. In the training phase, a heuristic strategy model, providing prior knowledge, was merged with a dynamic gain module to sidestep local optimal policies, collectively enhancing the learning efficiency. In the simulation, our method improved the success rate of the peduncle grasping by at least 14 %, compared with SAC, HER-DDPG and HER-TD3. For the identical scenarios, improved HER-SAC reached the desired posture with a minimum of 15.5 % fewer steps compared to other algorithms. In field experiments conducted in tomato greenhouses, the robot achieved a harvesting success rate of 85.5 %, which was an increase of 57.3 % and 43.0 % compared to traditional methods with fixed horizontal and parallel-to-main-stem postures, respectively. The average operation time, from identification to successful harvesting, was 11.42 s. Our findings offer a promising solution to enhancing the efficiency of tomato-harvesting robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
吴荣方完成签到,获得积分10
1秒前
1秒前
坚强的纸飞机完成签到,获得积分10
1秒前
FOX完成签到,获得积分10
2秒前
dengdeng完成签到,获得积分10
3秒前
4秒前
l900完成签到,获得积分20
4秒前
dengdeng发布了新的文献求助10
6秒前
吴荣方发布了新的文献求助10
8秒前
壮观大炮完成签到,获得积分10
8秒前
小蘑菇应助热情的未来采纳,获得10
9秒前
Jasper应助轻松的小曾采纳,获得10
10秒前
酷波er应助内向的绿海采纳,获得10
13秒前
充电宝应助内向的绿海采纳,获得10
13秒前
鈮宝完成签到 ,获得积分10
13秒前
WerWu完成签到,获得积分0
16秒前
16秒前
17秒前
医疗废物专用车乘客完成签到,获得积分10
19秒前
小曾发布了新的文献求助10
20秒前
wwt发布了新的文献求助10
22秒前
FashionBoy应助内向的绿海采纳,获得10
25秒前
25秒前
三泥完成签到,获得积分10
25秒前
Fn完成签到 ,获得积分10
27秒前
Momomo应助科研通管家采纳,获得10
28秒前
脑洞疼应助科研通管家采纳,获得30
29秒前
科研通AI6应助科研通管家采纳,获得10
29秒前
浮游应助科研通管家采纳,获得10
29秒前
Momomo应助科研通管家采纳,获得10
29秒前
浮游应助科研通管家采纳,获得10
29秒前
浮游应助科研通管家采纳,获得10
29秒前
Momomo应助科研通管家采纳,获得10
29秒前
Momomo应助科研通管家采纳,获得10
29秒前
浮游应助科研通管家采纳,获得10
29秒前
浮游应助科研通管家采纳,获得10
29秒前
wanci应助科研通管家采纳,获得10
29秒前
Orange应助科研通管家采纳,获得10
29秒前
丘比特应助科研通管家采纳,获得10
29秒前
科研通AI2S应助科研通管家采纳,获得30
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493621
求助须知:如何正确求助?哪些是违规求助? 4591657
关于积分的说明 14434342
捐赠科研通 4524055
什么是DOI,文献DOI怎么找? 2478579
邀请新用户注册赠送积分活动 1463596
关于科研通互助平台的介绍 1436426