Peduncle collision-free grasping based on deep reinforcement learning for tomato harvesting robot

花序梗(解剖学) 强化学习 人工智能 机器人 启发式 机器人末端执行器 计算机科学 计算机视觉 模拟 碰撞 功能(生物学) 控制理论(社会学) 生物 进化生物学 植物 控制(管理) 计算机安全
作者
Yajun Li,Qingchun Feng,Yifan Zhang,Chuanlang Peng,Yuhang Ma,Cheng Liu,Mengfei Ru,Jiahui Sun,Chunjiang Zhao
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:216: 108488-108488 被引量:30
标识
DOI:10.1016/j.compag.2023.108488
摘要

Collision-free grasping of the thin, brief peduncles connecting cherry tomato clusters to the main stem was crucial for tomato harvesting robots. Recognizing that the optimal operating posture for each individual peduncle was various, this study proposed a novel peduncle grasping posture decision model using deep reinforcement learning (DRL) for tomato harvesting manipulators, to overcome the collision issue caused by fixed-posture grasping. This model could dynamically generated action sequences for the harvesting manipulator, ensuring that the end-effector approach to the peduncle along the collision-free path with the optimal grasping posture. Building upon prior research into the multi-task identification of tomato clusters, peduncles, and the main stem, a keypoint-based spatial pose description model for tomato bunches was devised. Through this, the optimal operating posture for the end-effector on the peduncle was established. An improved HER-SAC (Soft Actor Critic with Hindsight Experience Replay) algorithm was subsequently established to guide the end-effector in collision-free grasping motions. The reward function of this algorithm incorporated end-effector posture constraints obtained from the optimal posture plane. In the training phase, a heuristic strategy model, providing prior knowledge, was merged with a dynamic gain module to sidestep local optimal policies, collectively enhancing the learning efficiency. In the simulation, our method improved the success rate of the peduncle grasping by at least 14 %, compared with SAC, HER-DDPG and HER-TD3. For the identical scenarios, improved HER-SAC reached the desired posture with a minimum of 15.5 % fewer steps compared to other algorithms. In field experiments conducted in tomato greenhouses, the robot achieved a harvesting success rate of 85.5 %, which was an increase of 57.3 % and 43.0 % compared to traditional methods with fixed horizontal and parallel-to-main-stem postures, respectively. The average operation time, from identification to successful harvesting, was 11.42 s. Our findings offer a promising solution to enhancing the efficiency of tomato-harvesting robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
顾矜应助Eileen采纳,获得10
1秒前
香蕉尔容完成签到,获得积分10
1秒前
Ni9e完成签到,获得积分10
2秒前
xiaotianli完成签到,获得积分10
2秒前
2秒前
Yuhong发布了新的文献求助30
2秒前
LPPQBB应助wwe采纳,获得100
3秒前
cloudup233完成签到,获得积分10
3秒前
3秒前
络巫琥关注了科研通微信公众号
3秒前
3秒前
3秒前
思源应助LMH采纳,获得10
3秒前
木头人应助研友_nEWly8采纳,获得10
4秒前
s1mple发布了新的文献求助10
4秒前
4秒前
英姑应助Polarbear29采纳,获得10
4秒前
脑洞疼应助SUN采纳,获得10
4秒前
5秒前
bkagyin应助心想事成采纳,获得10
5秒前
whhhhh发布了新的文献求助30
5秒前
ding应助义气鲂采纳,获得10
5秒前
脑洞疼应助篱篱清采纳,获得30
5秒前
情怀应助Eraser采纳,获得10
5秒前
rudjs发布了新的文献求助10
6秒前
林hh发布了新的文献求助10
6秒前
成长的点滴完成签到,获得积分10
6秒前
6秒前
6秒前
kuku_99发布了新的文献求助200
7秒前
苏莉婷完成签到,获得积分10
7秒前
7秒前
哈哈的哈哈应助XX采纳,获得20
7秒前
peach发布了新的文献求助10
7秒前
7秒前
8秒前
谜迪发布了新的文献求助10
8秒前
9秒前
共享精神应助西红柿采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286035
求助须知:如何正确求助?哪些是违规求助? 4438924
关于积分的说明 13819501
捐赠科研通 4320540
什么是DOI,文献DOI怎么找? 2371517
邀请新用户注册赠送积分活动 1367063
关于科研通互助平台的介绍 1330462