Peduncle collision-free grasping based on deep reinforcement learning for tomato harvesting robot

花序梗(解剖学) 强化学习 人工智能 机器人 启发式 机器人末端执行器 计算机科学 计算机视觉 模拟 碰撞 功能(生物学) 控制理论(社会学) 生物 进化生物学 植物 控制(管理) 计算机安全
作者
Yajun Li,Qingchun Feng,Yifan Zhang,Chuanlang Peng,Yuhang Ma,Cheng Liu,Mengfei Ru,Jiahui Sun,Chunjiang Zhao
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:216: 108488-108488 被引量:19
标识
DOI:10.1016/j.compag.2023.108488
摘要

Collision-free grasping of the thin, brief peduncles connecting cherry tomato clusters to the main stem was crucial for tomato harvesting robots. Recognizing that the optimal operating posture for each individual peduncle was various, this study proposed a novel peduncle grasping posture decision model using deep reinforcement learning (DRL) for tomato harvesting manipulators, to overcome the collision issue caused by fixed-posture grasping. This model could dynamically generated action sequences for the harvesting manipulator, ensuring that the end-effector approach to the peduncle along the collision-free path with the optimal grasping posture. Building upon prior research into the multi-task identification of tomato clusters, peduncles, and the main stem, a keypoint-based spatial pose description model for tomato bunches was devised. Through this, the optimal operating posture for the end-effector on the peduncle was established. An improved HER-SAC (Soft Actor Critic with Hindsight Experience Replay) algorithm was subsequently established to guide the end-effector in collision-free grasping motions. The reward function of this algorithm incorporated end-effector posture constraints obtained from the optimal posture plane. In the training phase, a heuristic strategy model, providing prior knowledge, was merged with a dynamic gain module to sidestep local optimal policies, collectively enhancing the learning efficiency. In the simulation, our method improved the success rate of the peduncle grasping by at least 14 %, compared with SAC, HER-DDPG and HER-TD3. For the identical scenarios, improved HER-SAC reached the desired posture with a minimum of 15.5 % fewer steps compared to other algorithms. In field experiments conducted in tomato greenhouses, the robot achieved a harvesting success rate of 85.5 %, which was an increase of 57.3 % and 43.0 % compared to traditional methods with fixed horizontal and parallel-to-main-stem postures, respectively. The average operation time, from identification to successful harvesting, was 11.42 s. Our findings offer a promising solution to enhancing the efficiency of tomato-harvesting robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笨笨芯关注了科研通微信公众号
1秒前
柚子完成签到,获得积分10
1秒前
木鱼完成签到,获得积分10
2秒前
实验好难应助aiueo采纳,获得10
2秒前
hachi完成签到,获得积分10
2秒前
2秒前
仁爱的谷南完成签到,获得积分10
2秒前
4秒前
together73W完成签到 ,获得积分10
4秒前
大秋哥哈拉少完成签到,获得积分10
4秒前
5秒前
豆腐青菜雨应助不穷知识采纳,获得10
6秒前
yxy发布了新的文献求助10
6秒前
7秒前
边佳佳发布了新的文献求助10
9秒前
科研通AI5应助辉hui采纳,获得10
9秒前
鹏程发布了新的文献求助10
9秒前
10秒前
紫泠榭发布了新的文献求助10
10秒前
我是老大应助tg2024采纳,获得10
10秒前
11秒前
11秒前
可爱的函函应助孤独夜安采纳,获得10
12秒前
芝士椰果完成签到,获得积分10
12秒前
12秒前
lan发布了新的文献求助10
12秒前
13秒前
善良过客完成签到,获得积分10
13秒前
Hh完成签到 ,获得积分10
14秒前
张萌发布了新的文献求助30
14秒前
aiueo发布了新的文献求助10
15秒前
qifeng完成签到,获得积分10
15秒前
CH发布了新的文献求助10
16秒前
16秒前
18秒前
木林森林木完成签到 ,获得积分10
19秒前
羊小旸完成签到,获得积分10
19秒前
完美世界应助sudaxia100采纳,获得10
21秒前
22秒前
22秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Gay and Lesbian Asia 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3759125
求助须知:如何正确求助?哪些是违规求助? 3302180
关于积分的说明 10121269
捐赠科研通 3016580
什么是DOI,文献DOI怎么找? 1656512
邀请新用户注册赠送积分活动 790521
科研通“疑难数据库(出版商)”最低求助积分说明 753886