Peduncle collision-free grasping based on deep reinforcement learning for tomato harvesting robot

花序梗(解剖学) 强化学习 人工智能 机器人 启发式 机器人末端执行器 计算机科学 计算机视觉 模拟 碰撞 功能(生物学) 控制理论(社会学) 生物 进化生物学 植物 控制(管理) 计算机安全
作者
Yajun Li,Qingchun Feng,Yifan Zhang,Chuanlang Peng,Yuhang Ma,Cheng Liu,Mengfei Ru,Jiahui Sun,Chunjiang Zhao
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:216: 108488-108488 被引量:35
标识
DOI:10.1016/j.compag.2023.108488
摘要

Collision-free grasping of the thin, brief peduncles connecting cherry tomato clusters to the main stem was crucial for tomato harvesting robots. Recognizing that the optimal operating posture for each individual peduncle was various, this study proposed a novel peduncle grasping posture decision model using deep reinforcement learning (DRL) for tomato harvesting manipulators, to overcome the collision issue caused by fixed-posture grasping. This model could dynamically generated action sequences for the harvesting manipulator, ensuring that the end-effector approach to the peduncle along the collision-free path with the optimal grasping posture. Building upon prior research into the multi-task identification of tomato clusters, peduncles, and the main stem, a keypoint-based spatial pose description model for tomato bunches was devised. Through this, the optimal operating posture for the end-effector on the peduncle was established. An improved HER-SAC (Soft Actor Critic with Hindsight Experience Replay) algorithm was subsequently established to guide the end-effector in collision-free grasping motions. The reward function of this algorithm incorporated end-effector posture constraints obtained from the optimal posture plane. In the training phase, a heuristic strategy model, providing prior knowledge, was merged with a dynamic gain module to sidestep local optimal policies, collectively enhancing the learning efficiency. In the simulation, our method improved the success rate of the peduncle grasping by at least 14 %, compared with SAC, HER-DDPG and HER-TD3. For the identical scenarios, improved HER-SAC reached the desired posture with a minimum of 15.5 % fewer steps compared to other algorithms. In field experiments conducted in tomato greenhouses, the robot achieved a harvesting success rate of 85.5 %, which was an increase of 57.3 % and 43.0 % compared to traditional methods with fixed horizontal and parallel-to-main-stem postures, respectively. The average operation time, from identification to successful harvesting, was 11.42 s. Our findings offer a promising solution to enhancing the efficiency of tomato-harvesting robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
amazeman111应助changfox采纳,获得10
4秒前
爱听歌嚓茶完成签到,获得积分10
6秒前
大豹子发布了新的文献求助10
6秒前
8秒前
朝韵完成签到 ,获得积分10
12秒前
14秒前
jsy完成签到,获得积分10
16秒前
大个应助月光龙吟剑匣采纳,获得10
17秒前
11111111完成签到 ,获得积分10
18秒前
舒心凡完成签到,获得积分10
19秒前
QinCaibin完成签到,获得积分10
19秒前
浮游应助NEW采纳,获得10
20秒前
23秒前
BowieHuang应助lwg采纳,获得10
25秒前
研友_VZG7GZ应助伶俐的颤采纳,获得10
26秒前
27秒前
顾矜应助科研通管家采纳,获得10
29秒前
Hanoi347应助科研通管家采纳,获得10
29秒前
无花果应助科研通管家采纳,获得10
29秒前
niceLDD应助科研通管家采纳,获得10
29秒前
CipherSage应助科研通管家采纳,获得10
29秒前
上官若男应助科研通管家采纳,获得10
30秒前
天天快乐应助科研通管家采纳,获得10
30秒前
小不点应助科研通管家采纳,获得10
30秒前
niceLDD应助科研通管家采纳,获得10
30秒前
Jasper应助科研通管家采纳,获得10
30秒前
我是老大应助科研通管家采纳,获得10
30秒前
Akim应助科研通管家采纳,获得10
30秒前
大个应助科研通管家采纳,获得20
30秒前
大个应助科研通管家采纳,获得10
30秒前
30秒前
30秒前
niceLDD应助科研通管家采纳,获得10
30秒前
深情安青应助科研通管家采纳,获得10
31秒前
华仔应助科研通管家采纳,获得10
31秒前
顾矜应助科研通管家采纳,获得10
31秒前
小不点应助科研通管家采纳,获得10
31秒前
我是老大应助科研通管家采纳,获得10
31秒前
情怀应助科研通管家采纳,获得10
31秒前
科研通AI6应助sssshhh采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557972
求助须知:如何正确求助?哪些是违规求助? 4642937
关于积分的说明 14669867
捐赠科研通 4584431
什么是DOI,文献DOI怎么找? 2514801
邀请新用户注册赠送积分活动 1489002
关于科研通互助平台的介绍 1459619