Peduncle collision-free grasping based on deep reinforcement learning for tomato harvesting robot

花序梗(解剖学) 强化学习 人工智能 机器人 启发式 机器人末端执行器 计算机科学 计算机视觉 模拟 碰撞 功能(生物学) 控制理论(社会学) 生物 植物 计算机安全 控制(管理) 进化生物学
作者
Yajun Li,Qingchun Feng,Yifan Zhang,Chuanlang Peng,Yuhang Ma,Cheng Liu,Mengfei Ru,Jiahui Sun,Chunjiang Zhao
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:216: 108488-108488 被引量:12
标识
DOI:10.1016/j.compag.2023.108488
摘要

Collision-free grasping of the thin, brief peduncles connecting cherry tomato clusters to the main stem was crucial for tomato harvesting robots. Recognizing that the optimal operating posture for each individual peduncle was various, this study proposed a novel peduncle grasping posture decision model using deep reinforcement learning (DRL) for tomato harvesting manipulators, to overcome the collision issue caused by fixed-posture grasping. This model could dynamically generated action sequences for the harvesting manipulator, ensuring that the end-effector approach to the peduncle along the collision-free path with the optimal grasping posture. Building upon prior research into the multi-task identification of tomato clusters, peduncles, and the main stem, a keypoint-based spatial pose description model for tomato bunches was devised. Through this, the optimal operating posture for the end-effector on the peduncle was established. An improved HER-SAC (Soft Actor Critic with Hindsight Experience Replay) algorithm was subsequently established to guide the end-effector in collision-free grasping motions. The reward function of this algorithm incorporated end-effector posture constraints obtained from the optimal posture plane. In the training phase, a heuristic strategy model, providing prior knowledge, was merged with a dynamic gain module to sidestep local optimal policies, collectively enhancing the learning efficiency. In the simulation, our method improved the success rate of the peduncle grasping by at least 14 %, compared with SAC, HER-DDPG and HER-TD3. For the identical scenarios, improved HER-SAC reached the desired posture with a minimum of 15.5 % fewer steps compared to other algorithms. In field experiments conducted in tomato greenhouses, the robot achieved a harvesting success rate of 85.5 %, which was an increase of 57.3 % and 43.0 % compared to traditional methods with fixed horizontal and parallel-to-main-stem postures, respectively. The average operation time, from identification to successful harvesting, was 11.42 s. Our findings offer a promising solution to enhancing the efficiency of tomato-harvesting robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高兴帅哥完成签到,获得积分10
刚刚
2秒前
aslink完成签到,获得积分10
2秒前
Amon完成签到,获得积分10
2秒前
啊娴仔发布了新的文献求助10
2秒前
camellia发布了新的文献求助10
2秒前
万能图书馆应助狂野觅云采纳,获得10
2秒前
充电宝应助zino采纳,获得10
3秒前
3秒前
小可发布了新的文献求助10
3秒前
英姑应助酷酷的起眸采纳,获得10
4秒前
Blue_Pig发布了新的文献求助10
4秒前
科研小白完成签到,获得积分10
5秒前
sooya发布了新的文献求助20
6秒前
6秒前
tiddler完成签到,获得积分10
6秒前
科研通AI2S应助滴滴采纳,获得10
6秒前
wgx完成签到,获得积分20
6秒前
7秒前
爱静静应助Keep采纳,获得10
7秒前
7秒前
7秒前
小马甲应助韭菜采纳,获得10
8秒前
MADKAI发布了新的文献求助10
8秒前
机智的白猫完成签到,获得积分10
8秒前
李健的小迷弟应助xxx采纳,获得10
8秒前
杜杜完成签到,获得积分10
8秒前
NexusExplorer应助新的心跳采纳,获得10
9秒前
10秒前
10秒前
10秒前
10秒前
10秒前
JamesPei应助小可采纳,获得10
10秒前
粗暴的醉卉完成签到,获得积分10
10秒前
10秒前
科研通AI5应助stt采纳,获得10
11秒前
sunzhiyu233发布了新的文献求助10
12秒前
12秒前
缓缓地安静关注了科研通微信公众号
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759