Peduncle collision-free grasping based on deep reinforcement learning for tomato harvesting robot

花序梗(解剖学) 强化学习 人工智能 机器人 启发式 机器人末端执行器 计算机科学 计算机视觉 模拟 碰撞 功能(生物学) 控制理论(社会学) 生物 植物 计算机安全 控制(管理) 进化生物学
作者
Yajun Li,Qingchun Feng,Yifan Zhang,Chuanlang Peng,Yuhang Ma,Cheng Liu,Mengfei Ru,Jiahui Sun,Chunjiang Zhao
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:216: 108488-108488 被引量:30
标识
DOI:10.1016/j.compag.2023.108488
摘要

Collision-free grasping of the thin, brief peduncles connecting cherry tomato clusters to the main stem was crucial for tomato harvesting robots. Recognizing that the optimal operating posture for each individual peduncle was various, this study proposed a novel peduncle grasping posture decision model using deep reinforcement learning (DRL) for tomato harvesting manipulators, to overcome the collision issue caused by fixed-posture grasping. This model could dynamically generated action sequences for the harvesting manipulator, ensuring that the end-effector approach to the peduncle along the collision-free path with the optimal grasping posture. Building upon prior research into the multi-task identification of tomato clusters, peduncles, and the main stem, a keypoint-based spatial pose description model for tomato bunches was devised. Through this, the optimal operating posture for the end-effector on the peduncle was established. An improved HER-SAC (Soft Actor Critic with Hindsight Experience Replay) algorithm was subsequently established to guide the end-effector in collision-free grasping motions. The reward function of this algorithm incorporated end-effector posture constraints obtained from the optimal posture plane. In the training phase, a heuristic strategy model, providing prior knowledge, was merged with a dynamic gain module to sidestep local optimal policies, collectively enhancing the learning efficiency. In the simulation, our method improved the success rate of the peduncle grasping by at least 14 %, compared with SAC, HER-DDPG and HER-TD3. For the identical scenarios, improved HER-SAC reached the desired posture with a minimum of 15.5 % fewer steps compared to other algorithms. In field experiments conducted in tomato greenhouses, the robot achieved a harvesting success rate of 85.5 %, which was an increase of 57.3 % and 43.0 % compared to traditional methods with fixed horizontal and parallel-to-main-stem postures, respectively. The average operation time, from identification to successful harvesting, was 11.42 s. Our findings offer a promising solution to enhancing the efficiency of tomato-harvesting robots.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乔达摩完成签到 ,获得积分0
1秒前
CipherSage应助dw采纳,获得10
1秒前
2秒前
3秒前
陈瑞完成签到,获得积分10
3秒前
123发布了新的文献求助10
4秒前
5秒前
5秒前
江睦月完成签到,获得积分10
6秒前
6秒前
Orange应助Iris采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
winwin_chan完成签到,获得积分10
7秒前
8秒前
8秒前
东方元语应助无极微光采纳,获得20
9秒前
9秒前
Shenliheng发布了新的文献求助10
10秒前
Zhe完成签到,获得积分10
11秒前
Rachel完成签到,获得积分10
11秒前
zhongxia完成签到 ,获得积分10
11秒前
自律的小钰完成签到,获得积分10
12秒前
高高发布了新的文献求助10
13秒前
14秒前
14秒前
小石头发布了新的文献求助10
15秒前
15秒前
18秒前
lin发布了新的文献求助10
19秒前
junze完成签到,获得积分10
20秒前
乔达摩悉达多完成签到 ,获得积分10
20秒前
20秒前
Lucas应助魅力小白菜采纳,获得10
21秒前
局外人发布了新的文献求助10
21秒前
求学完成签到 ,获得积分10
21秒前
Akim应助刚睡醒采纳,获得10
22秒前
哈哈发布了新的文献求助10
24秒前
LYL小怪兽完成签到 ,获得积分10
26秒前
27秒前
一一发布了新的文献求助10
27秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 1000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Elements of Evolutionary Genetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5453753
求助须知:如何正确求助?哪些是违规求助? 4561288
关于积分的说明 14281867
捐赠科研通 4485257
什么是DOI,文献DOI怎么找? 2456576
邀请新用户注册赠送积分活动 1447292
关于科研通互助平台的介绍 1422687