A climate-adaptive transfer learning framework for improving soil moisture estimation in the Qinghai-Tibet Plateau

高原(数学) 环境科学 估计 含水量 输水 水分 水文学(农业) 土壤科学 地质学 气象学 岩土工程 地理 水资源管理 数学 数学分析 管理 经济
作者
Junran Yang,Qinli Yang,Feichi Hu,Junming Shao,Guoqing Wang
出处
期刊:Journal of Hydrology [Elsevier BV]
卷期号:630: 130717-130717 被引量:8
标识
DOI:10.1016/j.jhydrol.2024.130717
摘要

Soil moisture (SM) plays essential roles in revealing complex interaction mechanisms among air–soil-water-plant processes. In the Qinghai-Tibet Plateau (QTP), the in-situ SM data is sparse and limited, satellite-based SM data has short period, while reanalysis SM data has advantages on long-term and high spatiotemporal resolution but has relatively high error. In this study, to improve soil moisture estimation in the QTP, we aim to propose a Climate-Adaptive Transfer Learning (CATL) framework for data scarce region based on reanalysis data (ERA5-LAND dataset) and the in-situ data (International Soil Moisture Network (ISMN) data). Specifically, regarding the QTP as the target region, selecting the areas with similar climate types with QTP as the source region, we train the CNN-LSTM fusion model in the source region and then transfer it to the target region via fine-tuning strategy. Results indicate that the produced soil moisture data based on CATL framework achieves CC of 0.755 and ubRMSE of 0.042, which has better quality than SMAPL3 during 2015–2019. Additionally, the CATL framework also produced the historical SM data reconstruction during 1960–2010, with CC increased by 11.3 % and ubRMSE reduced by 1.5 % compared with the original ERA5-Land reanalysis data. Furthermore, compared to the direct fine-tuning strategy (without climate adaptive), the CATL framework showed an increase of CC with 2.6 %, and decreases in RMSE, MAE, and ubRMSE of 5.3 %, 4.2 %, and 7.5 %, respectively. Finally, an improved soil moisture dataset (daily, 0.05°) ranging from 1960 to 2019 is produced for the QTP. This study provides a new tool for soil moisture estimation improvement in data-scarce region which will also benefit basin hydrology and water resources management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6应助zhao采纳,获得10
1秒前
英俊的铭应助风清扬采纳,获得10
2秒前
2秒前
3秒前
3秒前
yangyog完成签到,获得积分10
3秒前
小情绪应助laoji采纳,获得10
3秒前
4秒前
4秒前
4秒前
无花果应助aceman采纳,获得10
5秒前
get发布了新的文献求助10
5秒前
5秒前
科研通AI5应助nine2652采纳,获得10
5秒前
hnx1005完成签到 ,获得积分10
7秒前
风清扬发布了新的文献求助10
7秒前
7秒前
9秒前
9秒前
lalala发布了新的文献求助10
9秒前
甜滋滋发布了新的文献求助10
9秒前
溯溯完成签到 ,获得积分10
9秒前
biubiu完成签到,获得积分20
9秒前
迪士尼在逃公主1101号完成签到,获得积分20
9秒前
10秒前
第一成一发布了新的文献求助10
10秒前
田様应助木子李采纳,获得10
10秒前
Sylvia完成签到 ,获得积分10
10秒前
沉淀发布了新的文献求助10
11秒前
Yjx完成签到,获得积分20
11秒前
11秒前
鼻揩了转去应助彩色遥采纳,获得10
12秒前
fancy发布了新的文献求助10
13秒前
打工羊完成签到,获得积分10
14秒前
14秒前
15秒前
小giao吃不饱完成签到,获得积分10
15秒前
15秒前
SciGPT应助鲜于灵竹采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 1200
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4943311
求助须知:如何正确求助?哪些是违规求助? 4208499
关于积分的说明 13083053
捐赠科研通 3987953
什么是DOI,文献DOI怎么找? 2183354
邀请新用户注册赠送积分活动 1198954
关于科研通互助平台的介绍 1111530