脱卤球绦虫
脱氯作用
生物强化
环境化学
脱卤酶
多氯联苯
生物修复
化学
微生物学
细菌
生物
污染
生态学
遗传学
有机化学
氯乙烯
聚合物
共聚物
作者
Chen Chen,Guofang Xu,Matthew J. Rogers,Jianzhong He
标识
DOI:10.1021/acs.est.3c08473
摘要
Polychlorinated biphenyls (PCBs) are dioxin-like pollutants that cause persistent harm to life. Organohalide-respiring bacteria (OHRB) can detoxify PCBs via reductive dechlorination, but individual OHRB are potent in dechlorinating only specific PCB congeners, restricting the extent of PCB dechlorination. Moreover, the low biomass of OHRB frequently leads to the slow natural attenuation of PCBs at contaminated sites. Here we constructed defined microbial consortia comprising various combinations of PCB-dechlorinating Dehalococcoides strains (CG1, CG4, and CG5) to successfully enhance PCB dechlorination. Specifically, the defined consortia consisting of strains CG1 and CG4 removed 0.28–0.44 and 0.23–0.25 more chlorine per PCB from Aroclor1260 and Aroclor1254, respectively, compared to individual strains, which was attributed to the emergence of new PCB dechlorination pathways in defined consortia. Notably, different Dehalococcoides populations exhibited similar growth when cocultivated, but temporal differences in the expression of PCB reductive dehalogenase genes indicated their metabolic synergy. Bioaugmentation with individual strains (CG1, CG4, and CG5) or defined consortia led to greater PCB dechlorination in wetland sediments, and augmentation with the consortium comprising strains CG1 and CG4 resulted in the greatest PCB dechlorination. These findings collectively suggest that simultaneous application of multiple Dehalococcoides strains, which catalyze complementary dechlorination pathways, is an effective strategy to accelerate PCB dechlorination.
科研通智能强力驱动
Strongly Powered by AbleSci AI