An Intelligent Edge-IoT Platform With Deep Learning for Body Condition Scoring of Dairy Cow

物联网 计算机科学 GSM演进的增强数据速率 边缘计算 人工智能 深度学习 计算机安全
作者
Junhao Wang,Baisheng Dai,Li Yang,Yongqiang He,Yukun Sun,Weizheng Shen
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (10): 17453-17467 被引量:4
标识
DOI:10.1109/jiot.2024.3357862
摘要

Body condition score (BCS) of dairy cows is the direct reflection of their nutritional status. The timely estimation of BCS is beneficial to improving dairy cow health, milk production and reproduction. In this work, we propose an intelligent Edge-IoT platform with deep learning for estimating BCS of dairy cow, by integrating inference capability of deep learning and low latency of edge computing in IoT framework. Through capturing images of dairy cow's back with the RGB-D camera, inference module deployed in the edge computing device firstly performs cow detection to localize the separate area of each dairy cow, and then performs individual identification and estimating BCS of dairy cows simultaneously. The existing systems are mainly commercial systems such as DeLaval and HerdVision, they use electronic ear tags with radio-frequency identification sensors for cow identification. Compared to existing systems, in the proposed platform, combined the finetuned YOLOv7 model and Avoid Repeated Inference (ARI) algorithm to detect dairy cow. An EfficientID model combined with metric learning is designed for cow identification, and an EfficientBCS model with Coordinate Attention (CA) is proposed for estimating BCS. The dairy cow's identity (ID) and BCS are finally transmitted to the cloud analysis center. Experimental results show that the accuracy of estimating BCS reached 85% within 0.5 range error conducted on the test set collected in the dairy farm. The total inference time for one dairy cow is 3.138 seconds. Results show that the platform can be served as an excellent application of dairy cow body condition scoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
皮皮应助直率柠檬采纳,获得50
2秒前
Kbobo完成签到,获得积分20
2秒前
2秒前
在水一方应助BLLL采纳,获得30
4秒前
advance完成签到,获得积分0
4秒前
dsfsd应助Cookiee采纳,获得10
5秒前
玄风应助smin采纳,获得10
5秒前
浮若安生完成签到,获得积分10
6秒前
茶米发布了新的文献求助10
8秒前
8秒前
沉默的倔驴应助王亲近采纳,获得10
8秒前
8秒前
10秒前
打打应助住在魔仙堡的鱼采纳,获得10
10秒前
淡定成风应助科研通管家采纳,获得10
11秒前
浮游应助科研通管家采纳,获得10
11秒前
Aiz应助科研通管家采纳,获得10
11秒前
英俊的铭应助科研通管家采纳,获得10
11秒前
NexusExplorer应助科研通管家采纳,获得10
11秒前
传奇3应助科研通管家采纳,获得200
11秒前
今后应助科研通管家采纳,获得10
11秒前
bkagyin应助科研通管家采纳,获得10
11秒前
Orange应助科研通管家采纳,获得10
11秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
桐桐应助科研通管家采纳,获得30
12秒前
淡定成风应助科研通管家采纳,获得10
12秒前
丘比特应助科研通管家采纳,获得10
12秒前
李健应助科研通管家采纳,获得10
12秒前
英俊的铭应助科研通管家采纳,获得10
12秒前
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
英姑应助科研通管家采纳,获得10
12秒前
科目三应助科研通管家采纳,获得10
12秒前
爆米花应助科研通管家采纳,获得10
12秒前
爆米花应助科研通管家采纳,获得10
13秒前
柿子应助科研通管家采纳,获得10
13秒前
可可应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
爆米花应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536699
求助须知:如何正确求助?哪些是违规求助? 4624302
关于积分的说明 14591473
捐赠科研通 4564867
什么是DOI,文献DOI怎么找? 2501941
邀请新用户注册赠送积分活动 1480687
关于科研通互助平台的介绍 1451955