A Model Combining Conventional Ultrasound Characteristics, Strain Elastography and Clinicopathological Features to Predict Ki-67 Expression in Small Breast Cancer

接收机工作特性 超声波 医学 弹性成像 切断 乳腺癌 预测值 曲线下面积 回顾性队列研究 逐步回归 内科学 放射科 核医学 癌症 量子力学 物理
作者
Xuesha Xing,Huanhuan Miao,Hong Wang,Jiawei Sun,Chengwei Wu,Yichun Wang,Xian‐Li Zhou,Hongbo Wang
出处
期刊:Ultrasonic Imaging [SAGE]
卷期号:46 (2): 121-129
标识
DOI:10.1177/01617346231218933
摘要

To establish a predictive model incorporating conventional ultrasound, strain elastography and clinicopathological features for Ki-67 expression in small breast cancer (SBC) which defined as maximum diameter less than2 cm. In this retrospective study, 165 SBC patients from our hospital were allocated to a high Ki-67 group ( n = 104) and a low Ki-67 group ( n = 61). Multivariate regression analysis was performed to identify independent indicators for developing predictive models. The area under the receiver operating characteristic (AUC) curve was also determined to establish the diagnostic performance of different predictive models. The corresponding sensitivities and specificities of different models at the cutoff value were compared. Conventional ultrasound parameters (spiculated margin, absence of posterior shadowing and Adler grade 2–3), strain elastic scores and clinicopathological information (HER2 positive) were significantly correlated with high expression of Ki-67 in SBC (all p < .05). Model 2, which incorporated conventional ultrasound features and strain elastic scores, yielded good diagnostic performance (AUC = 0.774) with better sensitivity than model 1, which only incorporated ultrasound characteristics (78.85%vs. 55.77%, p = .000), with specificities of 77.05% and 62.30% ( p = .035), respectively. Model 3, which incorporated conventional ultrasound, strain elastography and clinicopathological features, yielded better performance (AUC = 0.853) than model 1 (AUC = 0.694) and model 2 (AUC = 0.774), and the specificity was higher than model 1 (86.89% vs. 77.05%, p = .001). The predictive model combining conventional ultrasound, strain elastic scores and clinicopathological features could improve the predictive performance of Ki-67 expression in SBC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
王璐璐完成签到,获得积分20
刚刚
1秒前
2秒前
2秒前
XiaotianLiu完成签到,获得积分10
2秒前
angel完成签到,获得积分10
2秒前
2秒前
墩子发布了新的文献求助10
2秒前
yy完成签到,获得积分20
3秒前
益智完成签到 ,获得积分10
3秒前
肖肖完成签到,获得积分10
4秒前
4秒前
每念至此完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
温婉的乌发布了新的文献求助10
6秒前
acrhth发布了新的文献求助10
6秒前
打打应助科研通管家采纳,获得10
6秒前
我是老大应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
dzbb应助科研通管家采纳,获得30
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
erhgbw应助科研通管家采纳,获得10
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得100
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
852应助jackpot采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
顺利的伊应助科研通管家采纳,获得10
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
AL11完成签到,获得积分10
7秒前
完美世界应助科研通管家采纳,获得10
7秒前
Noldor应助科研通管家采纳,获得10
7秒前
8秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156402
求助须知:如何正确求助?哪些是违规求助? 2807851
关于积分的说明 7874906
捐赠科研通 2466107
什么是DOI,文献DOI怎么找? 1312627
科研通“疑难数据库(出版商)”最低求助积分说明 630194
版权声明 601912