Optimal Location and Pricing of Electric Vehicle Charging Stations Using Machine Learning and Stackelberg Game

斯塔克伯格竞赛 电动汽车 计算机科学 汽车工程 博弈论 工程类 功率(物理) 微观经济学 经济 物理 量子力学
作者
Muhammad Adil,M. A. Parvez Mahmud,Abbas Z. Kouzani,Suiyang Khoo
出处
期刊:IEEE Transactions on Industry Applications [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15 被引量:2
标识
DOI:10.1109/tia.2024.3364579
摘要

The widespread adoption of electric vehicles (EVs) requires strategically located and well-priced charging stations (CSs) to facilitate the charging and discharging of EVs. To implement this necessity, a two-stage framework is proposed that involves demand forecasting and an optimization model to optimize the location and pricing of CSs. The first stage employs a Long Short-Term Memory (LSTM) model to forecast the 30-day energy demand for CSs using historical data from New South Wales (NSW), Australia. The energy demand is integrated into a bilevel optimization problem modeled as a Stackelberg game. Considering the energy demand, the leader in the game strategically selects the locations for new CSs, while the followers determine their charging prices at each location to maximize payoffs. In this article, an in-depth theoretical and analytical analysis of the potential new locations is performed to understand the demand and profitability at these locations. Moreover, a detailed game theoretic analysis is presented, considering both static and dynamic games to illustrate their impact on the payoff of CSs. Furthermore, a penalty function is designed at the follower end to limit the charging prices within reasonable bounds to improve the social welfare of the market mechanism. Overall, this paper presents a comprehensive scheme that offers a systematic approach to optimizing the location and pricing decisions for CSs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助碧蓝皮卡丘采纳,获得10
2秒前
orixero应助xun采纳,获得10
2秒前
2秒前
平凡之路完成签到,获得积分20
4秒前
4秒前
5秒前
脑洞疼应助周七七采纳,获得10
5秒前
5秒前
刘哈哈发布了新的文献求助10
6秒前
6秒前
赘婿应助liu星雨采纳,获得10
7秒前
7秒前
8秒前
8秒前
8秒前
fenghao完成签到,获得积分10
8秒前
13秒前
超级的白梦完成签到,获得积分10
13秒前
共享精神应助楚天正阔采纳,获得10
14秒前
14秒前
牛奶和完成签到,获得积分10
15秒前
liu星雨发布了新的文献求助10
18秒前
刘哈哈完成签到 ,获得积分10
19秒前
Niuma发布了新的文献求助10
20秒前
Hello应助苏酒采纳,获得10
22秒前
23秒前
26秒前
仁爱的绮兰完成签到,获得积分20
26秒前
27秒前
Katherine完成签到,获得积分10
28秒前
28秒前
任性的千柳完成签到,获得积分10
28秒前
malistm发布了新的文献求助30
30秒前
xun发布了新的文献求助10
30秒前
30秒前
爆米花应助zyx采纳,获得10
31秒前
科研通AI2S应助花花采纳,获得10
31秒前
32秒前
cassie发布了新的文献求助10
33秒前
liuyamei发布了新的文献求助10
33秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141967
求助须知:如何正确求助?哪些是违规求助? 2792954
关于积分的说明 7804609
捐赠科研通 2449278
什么是DOI,文献DOI怎么找? 1303129
科研通“疑难数据库(出版商)”最低求助积分说明 626796
版权声明 601291