Selectivity Control by Relay Catalysis in CO and CO2 Hydrogenation to Multicarbon Compounds

合成气 选择性 催化作用 费托法 甲醇 化学 碳纤维 氧合物 产品分销 化学工程 有机化学 材料科学 复合数 工程类 复合材料
作者
Kang Cheng,Yubing Li,Jincan Kang,Qinghong Zhang,Ye Wang
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:57 (5): 714-725 被引量:26
标识
DOI:10.1021/acs.accounts.3c00734
摘要

ConspectusThe hydrogenative conversion of both CO and CO2 into high-value multicarbon (C2+) compounds, such as olefins, aromatic hydrocarbons, ethanol, and liquid fuels, has attracted much recent attention. The hydrogenation of CO is related to the chemical utilization of various carbon resources including shale gas, biomass, coal, and carbon-containing wastes via syngas (a mixture of H2 and CO), while the hydrogenation of CO2 by green H2 to chemicals and liquid fuels would contribute to recycling CO2 for carbon neutrality. The state-of-the-art technologies for the hydrogenation of CO/CO2 to C2+ compounds primarily rely on a direct route via Fischer–Tropsch (FT) synthesis and an indirect route via two methanol-mediated processes, i.e., methanol synthesis from CO/CO2 and methanol to C2+ compounds. The direct route would be more energy- and cost-efficient owing to the reduced operation units, but the product selectivity of the direct route via FT synthesis is limited by the Anderson–Schulz–Flory (ASF) distribution. Selectivity control for the direct hydrogenation of CO/CO2 to a high-value C2+ compound is one of the most challenging goals in the field of C1 chemistry, i.e., chemistry for the transformation of one-carbon (C1) molecules.We have developed a relay-catalysis strategy to solve the selectivity challenge arising from the complicated reaction network in the hydrogenation of CO/CO2 to C2+ compounds involving multiple intermediates and reaction channels, which inevitably lead to side reactions and byproducts over a conventional heterogeneous catalyst. The core of relay catalysis is to design a single tandem-reaction channel, which can direct the reaction to the target product controllably, by choosing appropriate intermediates (or intermediate products) and reaction steps connecting these intermediates, and arranging optimized yet matched catalysts to implement these steps like a relay. This Account showcases representative relay-catalysis systems developed by our group in the past decade for the synthesis of liquid fuels, lower (C2–C4) olefins, aromatics, and C2+ oxygenates from CO/CO2 with selectivity breaking the limitation of conventional catalysts. These relay systems are typically composed of a metal or metal oxide for CO/CO2/H2 activation and a zeolite for C–C coupling or reconstruction, as well as a third or even a fourth catalyst component with other functions if necessary. The mechanisms for the activation of H2 and CO/CO2 on metal oxides, which are distinct from that on the conventional transition or noble metal surfaces, are discussed with emphasis on the role of oxygen vacancies. Zeolites catalyze the conversion of intermediates (including hydrocracking/isomerization of heavier hydrocarbons, methanol-to-hydrocarbon reactions, and carbonylation of methanol/dimethyl ether) in the relay system, and the selectivity is mainly controlled by the Brønsted acidity and the shape-selectivity or the confinement effect of zeolites. We demonstrate that the thermodynamic/kinetic matching of the relay steps, the proximity and spatial arrangement of the catalyst components, and the transportation of intermediates/products in sequence are the key issues guiding the selection of each catalyst component and the construction of an efficient relay-catalysis system. Our methodology would also be useful for the transformation of other C1 molecules via controlled C–C coupling, inspiring more efforts toward precision catalysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
凤凰山发布了新的文献求助10
1秒前
舒心靖琪完成签到 ,获得积分10
1秒前
清欢完成签到 ,获得积分20
1秒前
alick完成签到,获得积分10
2秒前
科研通AI2S应助拉斯特迪亚采纳,获得10
2秒前
小飞七应助jiangnan采纳,获得10
3秒前
3秒前
3秒前
独角兽完成签到 ,获得积分10
3秒前
lzqlzqlzqlzqlzq完成签到,获得积分10
4秒前
Geng完成签到,获得积分10
5秒前
5秒前
宇_完成签到,获得积分20
5秒前
香蕉觅云应助NEMO采纳,获得10
5秒前
6秒前
6秒前
星辰大海应助247793325采纳,获得20
6秒前
6秒前
灵巧荆发布了新的文献求助10
6秒前
6秒前
haimianbaobao完成签到 ,获得积分10
6秒前
7秒前
7秒前
8秒前
SAW发布了新的文献求助10
9秒前
爆米花应助LiShin采纳,获得10
9秒前
Jasper应助jxcandice采纳,获得10
10秒前
10秒前
Owen应助雾见春采纳,获得10
11秒前
aiming发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
13秒前
无辜之卉发布了新的文献求助10
13秒前
yty发布了新的文献求助10
13秒前
烟花应助卡夫卡没在海边采纳,获得10
14秒前
456发布了新的文献求助10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794