Heterogeneous graph knowledge distillation neural network incorporating multiple relations and cross-semantic interactions

计算机科学 语义学(计算机科学) 知识图 人工智能 关系(数据库) 理论计算机科学 图形 路径(计算) 人工神经网络 钥匙(锁) 节点(物理) 机器学习 数据挖掘 计算机安全 结构工程 工程类 程序设计语言
作者
Jinhu Fu,Chao Li,Zhongying Zhao,Qingtian Zeng
出处
期刊:Information Sciences [Elsevier BV]
卷期号:658: 120004-120004 被引量:5
标识
DOI:10.1016/j.ins.2023.120004
摘要

In recent years, the study of real-world graphs has revealed their inherent heterogeneity, prompting growing research interest in heterogeneous graphs. Characterized by diverse node and relation types, heterogeneous graphs have led to the development of heterogeneous graph neural networks, which possess the remarkable ability of modeling such heterogeneity. Consequently, researchers have embraced these networks, applying them in various domains. A prevalent approach is using meta-path based methods in heterogeneous graph neural networks. However, a significant limitation arises from the fact that such methods tend to overlook vital attribute information within intermediate nodes and disregard relevant semantics across various meta-paths. To address the above limitations, we propose a new model named HGNN-MRCS. Specifically, HGNN-MRCS incorporates three key components, i.e., a relation aware module to encapsulate the attribute information of the intermediate nodes; a meta-path aware technique to facilitate learning of semantic information of each meta-path and enable higher-order representation learning; and a knowledge distillation strategy to learn relevant semantics across meta-paths and fuse them. Experimental results on four real-world datasets demonstrate the superior performance of this work over the SOAT methods. The source codes of this work are available at https://github.com/ZZY-GraphMiningLab/HGNN-MRCS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
852应助4354采纳,获得10
1秒前
浮游应助Baili采纳,获得10
2秒前
2秒前
独特秋灵应助酷酷的山雁采纳,获得10
2秒前
丘比特应助妖九笙采纳,获得10
2秒前
yang完成签到,获得积分10
4秒前
JamesPei应助此晴可待采纳,获得10
4秒前
4秒前
5秒前
顾矜应助Hah采纳,获得10
5秒前
7秒前
蜀黍发布了新的文献求助10
7秒前
8秒前
盛隆发布了新的文献求助10
8秒前
wanci应助可靠幻然采纳,获得10
8秒前
眯眯眼的世界完成签到,获得积分10
9秒前
打打应助Gu采纳,获得10
10秒前
哈哈哈发布了新的文献求助10
10秒前
丁真浩完成签到,获得积分10
11秒前
于晓露完成签到,获得积分10
11秒前
香蕉觅云应助旦皋采纳,获得10
11秒前
12秒前
sure发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
玛卡巴卡发布了新的文献求助10
13秒前
13秒前
点一个随机昵称完成签到,获得积分10
14秒前
14秒前
溯溯完成签到 ,获得积分10
14秒前
冒昧硕完成签到,获得积分10
16秒前
意已完成签到,获得积分20
17秒前
NexusExplorer应助ke采纳,获得30
17秒前
蛰曜发布了新的文献求助10
17秒前
闲听花落发布了新的文献求助10
18秒前
年轻的夕阳关注了科研通微信公众号
18秒前
19秒前
充电宝应助哈哈哈哈采纳,获得10
19秒前
桐桐应助盛隆采纳,获得10
20秒前
21秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125089
求助须知:如何正确求助?哪些是违规求助? 4329088
关于积分的说明 13489719
捐赠科研通 4163770
什么是DOI,文献DOI怎么找? 2282542
邀请新用户注册赠送积分活动 1283707
关于科研通互助平台的介绍 1222981