Heterogeneous graph knowledge distillation neural network incorporating multiple relations and cross-semantic interactions

计算机科学 语义学(计算机科学) 知识图 人工智能 关系(数据库) 理论计算机科学 图形 路径(计算) 人工神经网络 钥匙(锁) 节点(物理) 机器学习 数据挖掘 计算机安全 结构工程 工程类 程序设计语言
作者
Jinhu Fu,Chao Li,Zhongying Zhao,Qingtian Zeng
出处
期刊:Information Sciences [Elsevier BV]
卷期号:658: 120004-120004 被引量:5
标识
DOI:10.1016/j.ins.2023.120004
摘要

In recent years, the study of real-world graphs has revealed their inherent heterogeneity, prompting growing research interest in heterogeneous graphs. Characterized by diverse node and relation types, heterogeneous graphs have led to the development of heterogeneous graph neural networks, which possess the remarkable ability of modeling such heterogeneity. Consequently, researchers have embraced these networks, applying them in various domains. A prevalent approach is using meta-path based methods in heterogeneous graph neural networks. However, a significant limitation arises from the fact that such methods tend to overlook vital attribute information within intermediate nodes and disregard relevant semantics across various meta-paths. To address the above limitations, we propose a new model named HGNN-MRCS. Specifically, HGNN-MRCS incorporates three key components, i.e., a relation aware module to encapsulate the attribute information of the intermediate nodes; a meta-path aware technique to facilitate learning of semantic information of each meta-path and enable higher-order representation learning; and a knowledge distillation strategy to learn relevant semantics across meta-paths and fuse them. Experimental results on four real-world datasets demonstrate the superior performance of this work over the SOAT methods. The source codes of this work are available at https://github.com/ZZY-GraphMiningLab/HGNN-MRCS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dallas完成签到,获得积分10
刚刚
敏尔完成签到,获得积分10
刚刚
双马尾小男生完成签到,获得积分10
刚刚
赘婿应助day_on采纳,获得10
1秒前
快乐小子发布了新的文献求助10
1秒前
1秒前
1秒前
3秒前
Rlawlight完成签到,获得积分10
3秒前
雪白傲珊完成签到,获得积分20
4秒前
4秒前
kk发布了新的文献求助10
5秒前
庞庞完成签到 ,获得积分10
5秒前
5秒前
kk关闭了kk文献求助
5秒前
缥缈傥发布了新的文献求助10
5秒前
qing完成签到,获得积分10
6秒前
Triste完成签到,获得积分10
6秒前
6秒前
顾矜应助谢太郎采纳,获得10
7秒前
aurora完成签到 ,获得积分10
7秒前
7秒前
双马尾小男生2完成签到,获得积分10
7秒前
终醒完成签到,获得积分10
7秒前
嗯嗯完成签到,获得积分10
7秒前
威武的冷风完成签到,获得积分10
7秒前
所所应助polofly采纳,获得10
7秒前
Chawee发布了新的文献求助10
9秒前
朴实从波完成签到,获得积分10
9秒前
大模型应助chenfaju采纳,获得10
9秒前
小鲨鱼发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
传奇3应助hhhee采纳,获得10
9秒前
黄鑫关注了科研通微信公众号
10秒前
10秒前
情怀应助3244190850采纳,获得10
10秒前
雪白傲珊发布了新的文献求助10
10秒前
gty完成签到,获得积分10
10秒前
wzh19940205完成签到,获得积分10
11秒前
害羞问安完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4572826
求助须知:如何正确求助?哪些是违规求助? 3993399
关于积分的说明 12362256
捐赠科研通 3666519
什么是DOI,文献DOI怎么找? 2020846
邀请新用户注册赠送积分活动 1055055
科研通“疑难数据库(出版商)”最低求助积分说明 942470