LAMD2: Enabling Economical and Green Travel for Diversified Mobility on Demand Systems

计算机科学 订单(交换) 图形 符号 强化学习 构造(python库) 运筹学 理论计算机科学 人工智能 计算机网络 工程类 数学 算术 财务 经济
作者
Lige Ding,Dong Zhao,Z. Wang,Huadóng Ma
出处
期刊:IEEE Transactions on Mobile Computing [Institute of Electrical and Electronics Engineers]
卷期号:23 (8): 8525-8540
标识
DOI:10.1109/tmc.2024.3353621
摘要

The diversified mobility on demand (MoD) systems integrate both traditional fuel vehicles and green transportation tools (e.g. shared bicycles and shared e-bikes), which can not only reduce the fleet size of traditional fuel vehicles but also address the demand for short-distance travel and alleviate environmental pollution. However, despite having a variety of travel tools, the existing MoD systems neglect the guidance on passengers according to their preferences and travel characteristics and thus lead to the failure of effective cooperation among multiple travel modes and additional waste of resources. This inspired us to design a novel order allocation mechanism for diversified MoD systems. Specifically, we construct a heterogeneous order graph based on the order sets, transform the minimum fleet problem into the minimum trajectory coverage problem on the heterogeneous order graph and propose a learning-based order allocation method LAMD $^{2}$ containing three modules. i) The online breadth-first order search framework fully considers the characteristics of different travel modes and the interaction of multiple vehicles, and then leverages the competitive mechanism to well handle the heterogeneity of travel modes and improve the overall efficiency. ii) The multi-semantic travel mode selection module analyzes users' preferences for diversified travel modes based on multi-semantic historical travel data and then determines the service mode based on the similarity of order spatiotemporal characteristics. iii) The Reinforcement Learning (RL)-based order evaluation module evaluates the long-term benefits of expanding existing For-Hire Vehicle (FHV) trajectories with different orders and updates the behavioral strategies through interactive feedback with the environment. We implement and evaluate the proposed method with a real-world trajectory dataset, demonstrating that LAMD $^{2}$ outperforms all the baselines and reduces the fleet size and energy consumption by the average of 2.93% and 8.01%, respectively, compared to the real-world systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
嘀嘀嘀完成签到,获得积分20
刚刚
wxy发布了新的文献求助10
1秒前
飞云之下发布了新的文献求助10
1秒前
1秒前
JAJ发布了新的文献求助10
3秒前
领导范儿应助飞云之下采纳,获得10
4秒前
Bonnie完成签到,获得积分20
5秒前
李健应助糖豆豆吃豆豆采纳,获得10
6秒前
小付发布了新的文献求助10
7秒前
犹豫千筹发布了新的文献求助10
8秒前
Noah发布了新的文献求助10
13秒前
Aniee完成签到,获得积分10
13秒前
酷波er应助八大山人采纳,获得10
13秒前
搜集达人应助ningwu采纳,获得10
17秒前
18秒前
NexusExplorer应助Uuuuuuumi采纳,获得20
18秒前
19秒前
19秒前
笨笨石头应助终有时采纳,获得10
19秒前
CodeCraft应助终有时采纳,获得10
19秒前
文静的成败完成签到,获得积分10
20秒前
菡一往完成签到 ,获得积分10
20秒前
笑面客发布了新的文献求助10
22秒前
23秒前
犹豫千筹完成签到,获得积分10
24秒前
嘿嘿完成签到,获得积分20
24秒前
26秒前
27秒前
swat发布了新的文献求助10
27秒前
胖胖桑完成签到,获得积分10
27秒前
ms吴完成签到,获得积分10
29秒前
29秒前
八大山人发布了新的文献求助10
34秒前
34秒前
还好还好完成签到,获得积分10
35秒前
慕青应助同尘采纳,获得10
38秒前
正正发布了新的文献求助10
39秒前
852发布了新的文献求助10
41秒前
42秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164337
求助须知:如何正确求助?哪些是违规求助? 2815164
关于积分的说明 7907823
捐赠科研通 2474743
什么是DOI,文献DOI怎么找? 1317626
科研通“疑难数据库(出版商)”最低求助积分说明 631898
版权声明 602234