PI3K/AKT/mTOR通路
蛋白激酶B
赫拉
自噬
蛋白激酶A
生物
葛兰素史克-3
激酶
信号转导
细胞生物学
Rap1型
生物化学
细胞凋亡
基因
突变
克拉斯
作者
Yuan Liu,Guo‐Chung Dong,Bin Yu,Ting Zeng,Feng-LI Jiao,Yanmeng Bi
标识
DOI:10.1016/j.jep.2024.117754
摘要
Clinical research and basic scientific experiments have shown that modified Xiaoyaosan (MXYS) has antidepressant effects, whose system mechanism however has not been thoroughly characterized. This research was aimed at evaluating the treatment effects of MXYS on chronic unpredictable mild stress (CUMS)-induced depressive mice and exploring underlying mechanisms. Whether MXYS has effects on depression was investigated via the depressive behaviors of mice, electron microscopy, real-time quantitative polymerase chain reaction (RT-qPCR), Western blot analysis, immunofluorescence (IF) staining and the stereotaxic injection of adeno-associated viruses (AAVs). In addition, network pharmacology was applied to predict relevant molecular targets and possible mechanisms and perform further in vivo validation. MXYS is effective in ameliorating the depression-like symptoms of CUMS mice. It can stimulate autophagosome formation, activate the expression of microtubule-associated protein 1 light chain 3 (LC3B), autophagy-related gene 5 (Atg5), Atg7 and neuron-specific nuclear protein (NeuN), and decrease the protein expression sequestosome 1 (SQSTM1/p62). The autophagy-upregulating effect of MXYS was weakened by silencing. The network pharmacology analysis revealed that mitogen-activated protein kinase 1 (MAPK1), MAPK3, serine/threonine-protein kinase (AKT1), proto-oncogene tyrosine-protein kinase (SRC), PI 3 kinase p85 alpha (PIK3R1), catenin (cadherin-associated protein) beta 1 (CTNNB1) and human thrombin activator 1 (HRAS) may be of importance to treat depression by MXYS. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that metabolic and autophagy pathways, pathways in cancer and MAPK, phosphoinositide 3-kinase (PI3K)-Akt and rhoptry-associated protein 1 (Rap1) signaling pathways are involved in the antidepressant effects of MXYS. As suggested by Western blot, the anti-depression mechanism of MXYS is possibly associated with the extracellular signal-regulated protein kinase (ERK)/P38 MAPK signaling pathway. The findings indicate the possible antidepressant effects of MXYS on CUMS mice via triggering autophagy to alleviate neuronal apoptosis and prompting autophagy, which may involve the ERK/P38 MAPK signaling pathway.
科研通智能强力驱动
Strongly Powered by AbleSci AI