GraphGST: Graph Generative Structure-Aware Transformer for Hyperspectral Image Classification

变压器 计算机科学 人工智能 高光谱成像 模式识别(心理学) 图形 生成语法 计算机视觉 遥感 地质学 理论计算机科学 工程类 电气工程 电压
作者
Mengying Jiang,Yuanchao Su,Lianru Gao,Antonio Plaza,Xi-Le Zhao,Xu Sun,Guizhong Liu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-16 被引量:40
标识
DOI:10.1109/tgrs.2023.3349076
摘要

Transformer holds significance in deep learning (DL) research. Node embedding (NE) and positional encoding (PE) are usually two indispensable components in a Transformer. The former can excavate hidden correlations from the data, while the latter can store locational relationships between nodes. Recently, the Transformer has been applied for hyperspectral image (HSI) classification because the model can capture long-range dependencies to aggregate global features for representation learning. In an HSI, adjacent pixels tend to be homogeneous, while the NE does not identify the positional information of pixels. Therefore, PE is crucial for Transformers to understand locational relationships between pixels. However, in this area, most Transformer-based methods randomly generate PEs without considering their physical meaning, which leads to weak representations. This article proposes a new graph generative structure-aware Transformer (GraphGST) to solve the above-mentioned PE problem when implementing HSI classification. In our GraphGST, a new absolute PE (APE) is established to acquire pixels' absolute positional sequences (APSs) and is integrated into the Transformer architecture. Moreover, a generative mechanism with self-supervised learning is developed to achieve cross-view contrastive learning (CL), aiming to enhance the representation learning of the Transformer. The proposed GraphGST model can capture local-to-global correlations, and the extracted APSs can complement the spectral features of pixels to assist in NE. Several experiments with real HSIs are conducted to evaluate the effectiveness of our GraphGST. The proposed method demonstrates very competitive performance compared with other state-of-the-art (SOTA) approaches. Our source codes will be provided in the following link https://github.com/yuanchaosu/TGRS-graphGST .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
酷波er应助aby采纳,获得10
刚刚
栖木木完成签到 ,获得积分10
刚刚
传奇3应助亦玉采纳,获得10
刚刚
笠柚完成签到,获得积分10
1秒前
Dreamchaser完成签到,获得积分20
2秒前
科目三应助施傲天采纳,获得10
2秒前
张蓝天完成签到,获得积分20
2秒前
香蕉觅云应助念梦采纳,获得10
3秒前
3秒前
NexusExplorer应助夏雪儿采纳,获得10
4秒前
qql发布了新的文献求助10
4秒前
酷酷的涫完成签到 ,获得积分10
4秒前
麦克雷发布了新的文献求助10
4秒前
不想干活应助熊仔采纳,获得10
5秒前
萬梓渝发布了新的文献求助10
5秒前
英俊的铭应助是个帅哥采纳,获得10
5秒前
6秒前
yyst发布了新的文献求助10
6秒前
8秒前
白苏su应助111采纳,获得10
8秒前
Paddi完成签到 ,获得积分10
8秒前
8秒前
惜灵完成签到 ,获得积分10
9秒前
9秒前
嘻嘻哈哈完成签到 ,获得积分10
12秒前
打打应助青城山下小星瞳采纳,获得10
14秒前
iris601发布了新的文献求助10
15秒前
天天快乐应助懒羊羊采纳,获得10
15秒前
17秒前
111完成签到,获得积分10
17秒前
天真的青烟完成签到,获得积分10
18秒前
Lucas应助现代孤萍采纳,获得10
19秒前
大模型应助马越智能服务采纳,获得10
20秒前
ELENA完成签到,获得积分10
20秒前
XHT完成签到,获得积分10
21秒前
21秒前
22秒前
23秒前
科研通AI6应助念梦采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633044
求助须知:如何正确求助?哪些是违规求助? 4029172
关于积分的说明 12466463
捐赠科研通 3715416
什么是DOI,文献DOI怎么找? 2050092
邀请新用户注册赠送积分活动 1081655
科研通“疑难数据库(出版商)”最低求助积分说明 963994