GraphGST: Graph Generative Structure-Aware Transformer for Hyperspectral Image Classification

变压器 计算机科学 人工智能 高光谱成像 模式识别(心理学) 图形 生成语法 计算机视觉 遥感 地质学 理论计算机科学 工程类 电气工程 电压
作者
Mengying Jiang,Yuanchao Su,Lianru Gao,Antonio Plaza,Xi-Le Zhao,Xu Sun,Guizhong Liu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-16 被引量:40
标识
DOI:10.1109/tgrs.2023.3349076
摘要

Transformer holds significance in deep learning (DL) research. Node embedding (NE) and positional encoding (PE) are usually two indispensable components in a Transformer. The former can excavate hidden correlations from the data, while the latter can store locational relationships between nodes. Recently, the Transformer has been applied for hyperspectral image (HSI) classification because the model can capture long-range dependencies to aggregate global features for representation learning. In an HSI, adjacent pixels tend to be homogeneous, while the NE does not identify the positional information of pixels. Therefore, PE is crucial for Transformers to understand locational relationships between pixels. However, in this area, most Transformer-based methods randomly generate PEs without considering their physical meaning, which leads to weak representations. This article proposes a new graph generative structure-aware Transformer (GraphGST) to solve the above-mentioned PE problem when implementing HSI classification. In our GraphGST, a new absolute PE (APE) is established to acquire pixels' absolute positional sequences (APSs) and is integrated into the Transformer architecture. Moreover, a generative mechanism with self-supervised learning is developed to achieve cross-view contrastive learning (CL), aiming to enhance the representation learning of the Transformer. The proposed GraphGST model can capture local-to-global correlations, and the extracted APSs can complement the spectral features of pixels to assist in NE. Several experiments with real HSIs are conducted to evaluate the effectiveness of our GraphGST. The proposed method demonstrates very competitive performance compared with other state-of-the-art (SOTA) approaches. Our source codes will be provided in the following link https://github.com/yuanchaosu/TGRS-graphGST .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勇者义彦完成签到,获得积分10
刚刚
1秒前
2秒前
充电宝应助strug783采纳,获得10
2秒前
传奇3应助xaq采纳,获得10
2秒前
小蘑菇应助neurojay采纳,获得10
3秒前
3秒前
Lxx发布了新的文献求助10
4秒前
科研通AI6应助简单谷梦采纳,获得10
4秒前
5秒前
李健应助tiantian采纳,获得10
5秒前
李健的小迷弟应助崔文浩采纳,获得10
5秒前
5秒前
迅速的鹤发布了新的文献求助10
6秒前
6秒前
6秒前
闻晓晴完成签到,获得积分10
7秒前
O已w时o完成签到 ,获得积分10
7秒前
7秒前
所所应助淡淡的飞雪采纳,获得10
8秒前
Jasper应助zhuzhu的江湖采纳,获得10
8秒前
8秒前
欢喜怀蝶发布了新的文献求助10
8秒前
彩色方盒完成签到,获得积分20
9秒前
9秒前
9秒前
9秒前
噶了完成签到,获得积分10
10秒前
咕咕咕发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
xxx发布了新的文献求助10
11秒前
嘻嘻哈哈应助须臾采纳,获得10
11秒前
李飞发布了新的文献求助10
11秒前
12秒前
小邓发布了新的文献求助10
12秒前
qingxuan发布了新的文献求助10
13秒前
qianfengming发布了新的文献求助10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5252054
求助须知:如何正确求助?哪些是违规求助? 4415915
关于积分的说明 13747919
捐赠科研通 4287735
什么是DOI,文献DOI怎么找? 2352603
邀请新用户注册赠送积分活动 1349374
关于科研通互助平台的介绍 1308916