亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

GraphGST: Graph Generative Structure-Aware Transformer for Hyperspectral Image Classification

变压器 像素 计算机科学 人工智能 高光谱成像 嵌入 模式识别(心理学) 图形 生成语法 生成模型 机器学习 理论计算机科学 工程类 电压 电气工程
作者
Mengying Jiang,Yuanchao Su,Lianru Gao,Antonio Plaza,Xi-Le Zhao,Xu Sun,Guizhong Liu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-16 被引量:10
标识
DOI:10.1109/tgrs.2023.3349076
摘要

Transformer holds significance in deep learning research. Node embedding (NE) and positional encoding (PE) are usually two indispensable components in a Transformer. The former can excavate hidden correlations from the data, while the latter can store locational relationships between nodes. Recently, the Transformer has been applied for hyperspectral image (HSI) classification because the model can capture long-range dependencies to aggregate global features for representation learning. In an HSI, adjacent pixels tend to be homogeneous, while the NE does not identify the positional information of pixels. Therefore, PE is crucial for Transformers to understand locational relationships between pixels. However, in this area, most Transformer-based methods randomly generate PEs without considering their physical meaning, which leads to weak representations. This paper proposes a new graph generative structure-aware Transformer (GraphGST) to solve the above-mentioned PE problem when implementing HSI classification. In our GraphGST, a new absolute positional encoding (APE) is established to acquire pixels’ absolute positional sequences (APSs) and is integrated into the Transformer architecture. Moreover, a generative mechanism with self-supervised learning is developed to achieve cross-view contrastive learning, aiming to enhance the representation learning of the Transformer. The proposed GraphGST model can capture local-to-global correlations, and the extracted APSs can complement the spectral features of pixels to assist in NE. Several experiments with real HSIs are conducted to evaluate the effectiveness of our GraphGST. The proposed method demonstrates very competitive performance compared with other state-of-the-art (SOTA) approaches. Our source codes will be provided in the following link https://github.com/yuanchaosu/TGRS-graphGST.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
1秒前
YifanWang应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
24秒前
不攻自破发布了新的文献求助10
27秒前
28秒前
30秒前
31秒前
bluebell发布了新的文献求助10
31秒前
59秒前
胡萝卜完成签到,获得积分10
1分钟前
Achange发布了新的文献求助10
1分钟前
小飞鸡发布了新的文献求助10
1分钟前
猪仔5号完成签到 ,获得积分10
1分钟前
Achange完成签到,获得积分10
1分钟前
小飞鸡完成签到,获得积分10
1分钟前
xicifish完成签到,获得积分10
1分钟前
xicifish发布了新的文献求助10
1分钟前
欧皇完成签到,获得积分20
1分钟前
1分钟前
桐桐应助科研通管家采纳,获得10
2分钟前
韦老虎完成签到,获得积分20
2分钟前
2分钟前
bluebell完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
ding应助欢呼的寻双采纳,获得10
3分钟前
笨笨完成签到,获得积分10
3分钟前
科研通AI5应助NinG采纳,获得10
3分钟前
上官若男应助不攻自破采纳,获得10
3分钟前
Eric800824完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
完美世界应助科研通管家采纳,获得10
4分钟前
华仔应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
lrid完成签到 ,获得积分10
4分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965706
求助须知:如何正确求助?哪些是违规求助? 3510935
关于积分的说明 11155653
捐赠科研通 3245378
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804214