亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

GraphGST: Graph Generative Structure-Aware Transformer for Hyperspectral Image Classification

变压器 计算机科学 人工智能 高光谱成像 模式识别(心理学) 图形 生成语法 计算机视觉 遥感 地质学 理论计算机科学 工程类 电压 电气工程
作者
Mengying Jiang,Yuanchao Su,Lianru Gao,Antonio Plaza,Xi-Le Zhao,Xu Sun,Guizhong Liu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-16 被引量:40
标识
DOI:10.1109/tgrs.2023.3349076
摘要

Transformer holds significance in deep learning (DL) research. Node embedding (NE) and positional encoding (PE) are usually two indispensable components in a Transformer. The former can excavate hidden correlations from the data, while the latter can store locational relationships between nodes. Recently, the Transformer has been applied for hyperspectral image (HSI) classification because the model can capture long-range dependencies to aggregate global features for representation learning. In an HSI, adjacent pixels tend to be homogeneous, while the NE does not identify the positional information of pixels. Therefore, PE is crucial for Transformers to understand locational relationships between pixels. However, in this area, most Transformer-based methods randomly generate PEs without considering their physical meaning, which leads to weak representations. This article proposes a new graph generative structure-aware Transformer (GraphGST) to solve the above-mentioned PE problem when implementing HSI classification. In our GraphGST, a new absolute PE (APE) is established to acquire pixels' absolute positional sequences (APSs) and is integrated into the Transformer architecture. Moreover, a generative mechanism with self-supervised learning is developed to achieve cross-view contrastive learning (CL), aiming to enhance the representation learning of the Transformer. The proposed GraphGST model can capture local-to-global correlations, and the extracted APSs can complement the spectral features of pixels to assist in NE. Several experiments with real HSIs are conducted to evaluate the effectiveness of our GraphGST. The proposed method demonstrates very competitive performance compared with other state-of-the-art (SOTA) approaches. Our source codes will be provided in the following link https://github.com/yuanchaosu/TGRS-graphGST .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沈院长完成签到 ,获得积分10
9秒前
ly完成签到,获得积分10
16秒前
碎碎完成签到,获得积分20
17秒前
19秒前
年鱼精完成签到 ,获得积分10
22秒前
碎碎发布了新的文献求助10
24秒前
领导范儿应助yilin采纳,获得10
27秒前
27秒前
DYL完成签到,获得积分10
30秒前
洞两发布了新的文献求助10
32秒前
35秒前
37秒前
疯狂老登发布了新的文献求助10
41秒前
yilin发布了新的文献求助10
42秒前
LH完成签到 ,获得积分10
43秒前
43秒前
坚定蘑菇完成签到 ,获得积分10
44秒前
汪哈七完成签到,获得积分10
45秒前
疯狂老登完成签到,获得积分10
47秒前
dvd完成签到 ,获得积分10
49秒前
英俊的铭应助洞两采纳,获得10
53秒前
爱航哥多久了完成签到 ,获得积分10
57秒前
1分钟前
归尘发布了新的文献求助10
1分钟前
1分钟前
酒渡完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
情怀应助科研通管家采纳,获得10
1分钟前
小马甲应助科研通管家采纳,获得10
1分钟前
李健应助Rui采纳,获得10
1分钟前
1分钟前
kukudou2发布了新的文献求助10
1分钟前
善良的花菜完成签到,获得积分10
1分钟前
1分钟前
1分钟前
pryturk发布了新的文献求助10
1分钟前
1分钟前
传奇3应助善良的花菜采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788218
求助须知:如何正确求助?哪些是违规求助? 5705246
关于积分的说明 15473310
捐赠科研通 4916338
什么是DOI,文献DOI怎么找? 2646295
邀请新用户注册赠送积分活动 1593951
关于科研通互助平台的介绍 1548328