GraphGST: Graph Generative Structure-Aware Transformer for Hyperspectral Image Classification

变压器 像素 计算机科学 人工智能 高光谱成像 嵌入 模式识别(心理学) 图形 生成语法 生成模型 机器学习 理论计算机科学 工程类 电压 电气工程
作者
Mengying Jiang,Yuanchao Su,Lianru Gao,Antonio Plaza,Xi-Le Zhao,Xu Sun,Guizhong Liu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-16 被引量:10
标识
DOI:10.1109/tgrs.2023.3349076
摘要

Transformer holds significance in deep learning research. Node embedding (NE) and positional encoding (PE) are usually two indispensable components in a Transformer. The former can excavate hidden correlations from the data, while the latter can store locational relationships between nodes. Recently, the Transformer has been applied for hyperspectral image (HSI) classification because the model can capture long-range dependencies to aggregate global features for representation learning. In an HSI, adjacent pixels tend to be homogeneous, while the NE does not identify the positional information of pixels. Therefore, PE is crucial for Transformers to understand locational relationships between pixels. However, in this area, most Transformer-based methods randomly generate PEs without considering their physical meaning, which leads to weak representations. This paper proposes a new graph generative structure-aware Transformer (GraphGST) to solve the above-mentioned PE problem when implementing HSI classification. In our GraphGST, a new absolute positional encoding (APE) is established to acquire pixels’ absolute positional sequences (APSs) and is integrated into the Transformer architecture. Moreover, a generative mechanism with self-supervised learning is developed to achieve cross-view contrastive learning, aiming to enhance the representation learning of the Transformer. The proposed GraphGST model can capture local-to-global correlations, and the extracted APSs can complement the spectral features of pixels to assist in NE. Several experiments with real HSIs are conducted to evaluate the effectiveness of our GraphGST. The proposed method demonstrates very competitive performance compared with other state-of-the-art (SOTA) approaches. Our source codes will be provided in the following link https://github.com/yuanchaosu/TGRS-graphGST.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
www完成签到,获得积分20
4秒前
4秒前
plum完成签到 ,获得积分10
7秒前
7秒前
9秒前
寒冷半雪完成签到,获得积分10
11秒前
11秒前
ssj完成签到 ,获得积分10
13秒前
14秒前
sunidea发布了新的文献求助10
15秒前
Pursue完成签到,获得积分10
16秒前
heartworm完成签到 ,获得积分10
17秒前
17秒前
yab完成签到 ,获得积分10
23秒前
莫妮卡.宾完成签到 ,获得积分10
23秒前
25秒前
GRG完成签到 ,获得积分10
28秒前
young关注了科研通微信公众号
28秒前
GGbong发布了新的文献求助10
30秒前
lzl完成签到,获得积分10
30秒前
若冰发布了新的文献求助30
31秒前
ZhJF完成签到 ,获得积分10
32秒前
34秒前
小蘑菇应助快乐的呼呼采纳,获得10
36秒前
可乐发布了新的文献求助10
41秒前
哈哈哈完成签到,获得积分10
43秒前
43秒前
在水一方应助sunidea采纳,获得10
45秒前
共享精神应助激动的士萧采纳,获得10
47秒前
47秒前
Lucas应助冲冲冲冲冲冲采纳,获得10
47秒前
向雅发布了新的文献求助30
48秒前
50秒前
红红的红红发布了新的文献求助200
50秒前
young发布了新的文献求助20
51秒前
maomao发布了新的文献求助10
51秒前
STAR_To完成签到,获得积分10
51秒前
air-yi完成签到,获得积分10
51秒前
52秒前
不配.应助满穗采纳,获得20
54秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136127
求助须知:如何正确求助?哪些是违规求助? 2787029
关于积分的说明 7780244
捐赠科研通 2443154
什么是DOI,文献DOI怎么找? 1298899
科研通“疑难数据库(出版商)”最低求助积分说明 625294
版权声明 600870