已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

GraphGST: Graph Generative Structure-Aware Transformer for Hyperspectral Image Classification

变压器 计算机科学 人工智能 高光谱成像 模式识别(心理学) 图形 生成语法 计算机视觉 遥感 地质学 理论计算机科学 工程类 电气工程 电压
作者
Mengying Jiang,Yuanchao Su,Lianru Gao,Antonio Plaza,Xi-Le Zhao,Xu Sun,Guizhong Liu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-16 被引量:40
标识
DOI:10.1109/tgrs.2023.3349076
摘要

Transformer holds significance in deep learning (DL) research. Node embedding (NE) and positional encoding (PE) are usually two indispensable components in a Transformer. The former can excavate hidden correlations from the data, while the latter can store locational relationships between nodes. Recently, the Transformer has been applied for hyperspectral image (HSI) classification because the model can capture long-range dependencies to aggregate global features for representation learning. In an HSI, adjacent pixels tend to be homogeneous, while the NE does not identify the positional information of pixels. Therefore, PE is crucial for Transformers to understand locational relationships between pixels. However, in this area, most Transformer-based methods randomly generate PEs without considering their physical meaning, which leads to weak representations. This article proposes a new graph generative structure-aware Transformer (GraphGST) to solve the above-mentioned PE problem when implementing HSI classification. In our GraphGST, a new absolute PE (APE) is established to acquire pixels' absolute positional sequences (APSs) and is integrated into the Transformer architecture. Moreover, a generative mechanism with self-supervised learning is developed to achieve cross-view contrastive learning (CL), aiming to enhance the representation learning of the Transformer. The proposed GraphGST model can capture local-to-global correlations, and the extracted APSs can complement the spectral features of pixels to assist in NE. Several experiments with real HSIs are conducted to evaluate the effectiveness of our GraphGST. The proposed method demonstrates very competitive performance compared with other state-of-the-art (SOTA) approaches. Our source codes will be provided in the following link https://github.com/yuanchaosu/TGRS-graphGST .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助等待的小兔子采纳,获得10
刚刚
Hazel完成签到,获得积分10
4秒前
5秒前
笑点低完成签到 ,获得积分10
6秒前
等待的小兔子完成签到,获得积分20
9秒前
9秒前
Ss完成签到 ,获得积分10
9秒前
10秒前
10秒前
13秒前
不安可愁完成签到,获得积分10
13秒前
从容面包发布了新的文献求助10
13秒前
14秒前
17秒前
威武灵阳完成签到,获得积分10
18秒前
黄涛涛发布了新的文献求助10
19秒前
Freedom_1996完成签到,获得积分10
19秒前
21秒前
扫地888完成签到 ,获得积分10
22秒前
云影箫羽完成签到 ,获得积分10
25秒前
嘻嘻汐泽发布了新的文献求助10
25秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
我是老大应助科研通管家采纳,获得10
26秒前
26秒前
烊烊完成签到 ,获得积分10
31秒前
嘻嘻汐泽完成签到,获得积分10
33秒前
38秒前
38秒前
samtol完成签到,获得积分10
38秒前
医疗废物专用车乘客完成签到,获得积分10
38秒前
如约而至完成签到 ,获得积分10
42秒前
46秒前
丽娘完成签到 ,获得积分10
50秒前
silence完成签到 ,获得积分10
50秒前
诚心溪灵发布了新的文献求助20
51秒前
53秒前
57秒前
59秒前
59秒前
默默发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5076871
求助须知:如何正确求助?哪些是违规求助? 4296247
关于积分的说明 13386588
捐赠科研通 4118438
什么是DOI,文献DOI怎么找? 2255317
邀请新用户注册赠送积分活动 1259804
关于科研通互助平台的介绍 1192846