Harnessing Artificial Intelligence for Enhanced Renal Analysis: Automated Detection of Hydronephrosis and Precise Kidney Segmentation

肾积水 分割 假阳性悖论 超声波 人工智能 计算机科学 Sørensen–骰子系数 医学 卷积神经网络 放射科 图像分割 模式识别(心理学) 泌尿系统 内科学
作者
Radu Alexa,Jennifer Kranz,Rafael Kramann,Christoph Kuppe,Ritabrata Sanyal,Sikander Hayat,Luis Felipe Casas Murillo,Turkan Hajili,Marco Hoffmann,Matthias Saar
出处
期刊:European urology open science [Elsevier BV]
卷期号:62: 19-25 被引量:1
标识
DOI:10.1016/j.euros.2024.01.017
摘要

Hydronephrosis is essential in the diagnosis of renal colic. We automated the detection of hydronephrosis from ultrasound images to standardize the therapy and reduce the misdiagnosis of renal colic. Anonymously collected ultrasound images of human kidneys, both normal and hydronephrotic, were preprocessed for neural networks. Six "state of the art" models were trained and cross-validated for the detection of hydronephrosis, and two convolutional networks were used for kidney segmentation. In the testing phase, performance metrics included true positives, true negatives, false positives, false negatives, accuracy, and F1 score, while the evaluation of the segmentation task involved accuracy, precision, dice, jaccard, recall, and ASSD. A total of 523 sonographic kidney images (423 nonhydronephrotic and 100 hydronephrotic) were collected from three different ultrasound devices. After training on this dataset, all models were used to evaluate 200 new ultrasound kidney images (142 nonhydronephrotic and 58 hydronephrotic kidneys). The highest validation accuracy (98.5%) was achieved by the AlexNet model (GoogLeNet 97%, AlexNet_v2 96%, ResNet50 96%, ResNet101 97.5%, and ResNet152 95%). The deeplabv3_resnet50 and deeplabv3_resnet101 reached a dice coefficient of 94.74% and 94.48%, respectively, on the task of automated kidney segmentation. The study is limited by analyzing only hydronephrosis, but this specific focus enabled high detection accuracy. We show that our automated ultrasound deep learning model can be trained and used to interpret and segmentate ultrasound images from different sources with high accuracy. This method will serve as an automated tool in the diagnostic algorithm of acute renal failure in the future. Hydronephrosis is crucial in the diagnosis of renal colic. Recent advances in artificial intelligence allow automated detection of hydronephrosis in ultrasound images with high accuracy. These methods will help standardize the diagnosis and treatment renal colic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
失眠的霸完成签到,获得积分10
1秒前
RHLVE应助戚薇采纳,获得20
1秒前
1秒前
wjx发布了新的文献求助10
1秒前
shuangcheng发布了新的文献求助10
1秒前
charm12发布了新的文献求助10
1秒前
研友_VZG7GZ应助fyfly采纳,获得10
2秒前
2秒前
全糖完成签到,获得积分10
2秒前
吴志新完成签到,获得积分10
2秒前
心旷神怡发布了新的文献求助10
2秒前
Jiaocm完成签到,获得积分10
3秒前
海的蓝色是水完成签到,获得积分20
3秒前
天天快乐应助明天过后采纳,获得10
4秒前
4秒前
4秒前
5秒前
5秒前
所所应助吴真好采纳,获得10
5秒前
乐观小之应助wogua采纳,获得10
5秒前
隐形曼青应助wogua采纳,获得10
5秒前
6秒前
清脆惜寒应助Wang采纳,获得30
6秒前
标致乐双发布了新的文献求助10
7秒前
Catalina_S应助太阳采纳,获得20
7秒前
华仔应助刘桑桑采纳,获得10
7秒前
8秒前
9秒前
深情安青应助123456采纳,获得10
9秒前
清爽千亦完成签到 ,获得积分10
9秒前
9秒前
周周完成签到 ,获得积分10
10秒前
读书妖精文亭逐完成签到,获得积分10
10秒前
10秒前
管歌发布了新的文献求助10
10秒前
leez完成签到,获得积分10
11秒前
11秒前
12秒前
WTT发布了新的文献求助10
12秒前
12秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646