Harnessing Artificial Intelligence for Enhanced Renal Analysis: Automated Detection of Hydronephrosis and Precise Kidney Segmentation

肾积水 分割 假阳性悖论 超声波 人工智能 计算机科学 Sørensen–骰子系数 医学 卷积神经网络 放射科 图像分割 模式识别(心理学) 泌尿系统 内科学
作者
Radu Alexa,Jennifer Kranz,Rafael Kramann,Christoph Kuppe,Ritabrata Sanyal,Sikander Hayat,Luis Felipe Casas Murillo,Turkan Hajili,Marco Hoffmann,Matthias Saar
出处
期刊:European urology open science [Elsevier]
卷期号:62: 19-25 被引量:1
标识
DOI:10.1016/j.euros.2024.01.017
摘要

Hydronephrosis is essential in the diagnosis of renal colic. We automated the detection of hydronephrosis from ultrasound images to standardize the therapy and reduce the misdiagnosis of renal colic. Anonymously collected ultrasound images of human kidneys, both normal and hydronephrotic, were preprocessed for neural networks. Six "state of the art" models were trained and cross-validated for the detection of hydronephrosis, and two convolutional networks were used for kidney segmentation. In the testing phase, performance metrics included true positives, true negatives, false positives, false negatives, accuracy, and F1 score, while the evaluation of the segmentation task involved accuracy, precision, dice, jaccard, recall, and ASSD. A total of 523 sonographic kidney images (423 nonhydronephrotic and 100 hydronephrotic) were collected from three different ultrasound devices. After training on this dataset, all models were used to evaluate 200 new ultrasound kidney images (142 nonhydronephrotic and 58 hydronephrotic kidneys). The highest validation accuracy (98.5%) was achieved by the AlexNet model (GoogLeNet 97%, AlexNet_v2 96%, ResNet50 96%, ResNet101 97.5%, and ResNet152 95%). The deeplabv3_resnet50 and deeplabv3_resnet101 reached a dice coefficient of 94.74% and 94.48%, respectively, on the task of automated kidney segmentation. The study is limited by analyzing only hydronephrosis, but this specific focus enabled high detection accuracy. We show that our automated ultrasound deep learning model can be trained and used to interpret and segmentate ultrasound images from different sources with high accuracy. This method will serve as an automated tool in the diagnostic algorithm of acute renal failure in the future. Hydronephrosis is crucial in the diagnosis of renal colic. Recent advances in artificial intelligence allow automated detection of hydronephrosis in ultrasound images with high accuracy. These methods will help standardize the diagnosis and treatment renal colic.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sandman完成签到,获得积分10
1秒前
天气不错给天气不错的求助进行了留言
2秒前
2秒前
2秒前
luckbaby发布了新的文献求助10
4秒前
4秒前
zzh完成签到 ,获得积分10
4秒前
YOUNG-M完成签到,获得积分10
4秒前
小草三心发布了新的文献求助10
4秒前
缥缈的寒梅完成签到 ,获得积分10
5秒前
BBBBB发布了新的文献求助10
5秒前
懵懂的凝丹完成签到 ,获得积分10
5秒前
6秒前
6秒前
HMUBIN完成签到,获得积分20
6秒前
Aru完成签到 ,获得积分10
6秒前
6秒前
万能图书馆应助youhebuk采纳,获得10
7秒前
8秒前
8秒前
9秒前
tt发布了新的文献求助30
9秒前
渔舟唱晚完成签到,获得积分10
10秒前
木一完成签到,获得积分10
10秒前
轻松曲奇完成签到,获得积分10
10秒前
11秒前
11秒前
贝涛发布了新的文献求助10
12秒前
共享精神应助清脆的思枫采纳,获得10
12秒前
12秒前
顺心绮兰发布了新的文献求助10
12秒前
重重重飞完成签到 ,获得积分10
12秒前
13秒前
陈玉玲发布了新的文献求助10
13秒前
陶醉苠发布了新的文献求助10
13秒前
并肩于雪山之巅完成签到 ,获得积分10
13秒前
14秒前
YBY关闭了YBY文献求助
14秒前
Jasper应助发的不太好采纳,获得10
14秒前
14秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124076
求助须知:如何正确求助?哪些是违规求助? 2774440
关于积分的说明 7722701
捐赠科研通 2430008
什么是DOI,文献DOI怎么找? 1290873
科研通“疑难数据库(出版商)”最低求助积分说明 621960
版权声明 600283