Harnessing Artificial Intelligence for Enhanced Renal Analysis: Automated Detection of Hydronephrosis and Precise Kidney Segmentation

肾积水 分割 假阳性悖论 超声波 人工智能 计算机科学 Sørensen–骰子系数 医学 卷积神经网络 放射科 图像分割 模式识别(心理学) 泌尿系统 内科学
作者
Radu Alexa,Jennifer Kranz,Rafael Kramann,Christoph Kuppe,Ritabrata Sanyal,Sikander Hayat,Luis Felipe Casas Murillo,Turkan Hajili,Marco Hoffmann,Matthias Saar
出处
期刊:European urology open science [Elsevier BV]
卷期号:62: 19-25 被引量:1
标识
DOI:10.1016/j.euros.2024.01.017
摘要

Hydronephrosis is essential in the diagnosis of renal colic. We automated the detection of hydronephrosis from ultrasound images to standardize the therapy and reduce the misdiagnosis of renal colic. Anonymously collected ultrasound images of human kidneys, both normal and hydronephrotic, were preprocessed for neural networks. Six "state of the art" models were trained and cross-validated for the detection of hydronephrosis, and two convolutional networks were used for kidney segmentation. In the testing phase, performance metrics included true positives, true negatives, false positives, false negatives, accuracy, and F1 score, while the evaluation of the segmentation task involved accuracy, precision, dice, jaccard, recall, and ASSD. A total of 523 sonographic kidney images (423 nonhydronephrotic and 100 hydronephrotic) were collected from three different ultrasound devices. After training on this dataset, all models were used to evaluate 200 new ultrasound kidney images (142 nonhydronephrotic and 58 hydronephrotic kidneys). The highest validation accuracy (98.5%) was achieved by the AlexNet model (GoogLeNet 97%, AlexNet_v2 96%, ResNet50 96%, ResNet101 97.5%, and ResNet152 95%). The deeplabv3_resnet50 and deeplabv3_resnet101 reached a dice coefficient of 94.74% and 94.48%, respectively, on the task of automated kidney segmentation. The study is limited by analyzing only hydronephrosis, but this specific focus enabled high detection accuracy. We show that our automated ultrasound deep learning model can be trained and used to interpret and segmentate ultrasound images from different sources with high accuracy. This method will serve as an automated tool in the diagnostic algorithm of acute renal failure in the future. Hydronephrosis is crucial in the diagnosis of renal colic. Recent advances in artificial intelligence allow automated detection of hydronephrosis in ultrasound images with high accuracy. These methods will help standardize the diagnosis and treatment renal colic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
可爱的函函应助Haley采纳,获得10
刚刚
Aba完成签到,获得积分10
1秒前
1秒前
小舞发布了新的文献求助10
1秒前
2秒前
2秒前
wen完成签到,获得积分10
4秒前
2025完成签到 ,获得积分10
4秒前
zigzag发布了新的文献求助30
4秒前
yang完成签到,获得积分10
4秒前
Wendy发布了新的文献求助10
4秒前
deway发布了新的文献求助10
4秒前
hhhh完成签到,获得积分10
5秒前
氼乚完成签到,获得积分10
5秒前
麻瓜小韩完成签到,获得积分20
6秒前
打打应助晨曦采纳,获得10
7秒前
7秒前
7秒前
NexusExplorer应助可靠尔冬采纳,获得10
7秒前
mjn发布了新的文献求助10
8秒前
一只鱼完成签到,获得积分10
8秒前
hyw完成签到,获得积分10
8秒前
8秒前
赘婿应助清秀的曼青采纳,获得10
8秒前
9秒前
孤独念柏完成签到,获得积分10
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
天天快乐应助tt采纳,获得10
11秒前
11秒前
catherine完成签到,获得积分10
12秒前
liuhang完成签到,获得积分10
12秒前
像风一样完成签到,获得积分10
12秒前
半夏林完成签到 ,获得积分10
13秒前
13秒前
脑洞疼应助研友_LMoboZ采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
当代中国马克思主义问题意识研究 科学出版社 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4988203
求助须知:如何正确求助?哪些是违规求助? 4237692
关于积分的说明 13200198
捐赠科研通 4031585
什么是DOI,文献DOI怎么找? 2205662
邀请新用户注册赠送积分活动 1217092
关于科研通互助平台的介绍 1135196