Harnessing Artificial Intelligence for Enhanced Renal Analysis: Automated Detection of Hydronephrosis and Precise Kidney Segmentation

肾积水 分割 假阳性悖论 超声波 人工智能 计算机科学 Sørensen–骰子系数 医学 卷积神经网络 放射科 图像分割 模式识别(心理学) 泌尿系统 内科学
作者
Radu Alexa,Jennifer Kranz,Rafael Kramann,Christoph Kuppe,Ritabrata Sanyal,Sikander Hayat,Luis Felipe Casas Murillo,Turkan Hajili,Marco Hoffmann,Matthias Saar
出处
期刊:European urology open science [Elsevier BV]
卷期号:62: 19-25 被引量:1
标识
DOI:10.1016/j.euros.2024.01.017
摘要

Hydronephrosis is essential in the diagnosis of renal colic. We automated the detection of hydronephrosis from ultrasound images to standardize the therapy and reduce the misdiagnosis of renal colic. Anonymously collected ultrasound images of human kidneys, both normal and hydronephrotic, were preprocessed for neural networks. Six "state of the art" models were trained and cross-validated for the detection of hydronephrosis, and two convolutional networks were used for kidney segmentation. In the testing phase, performance metrics included true positives, true negatives, false positives, false negatives, accuracy, and F1 score, while the evaluation of the segmentation task involved accuracy, precision, dice, jaccard, recall, and ASSD. A total of 523 sonographic kidney images (423 nonhydronephrotic and 100 hydronephrotic) were collected from three different ultrasound devices. After training on this dataset, all models were used to evaluate 200 new ultrasound kidney images (142 nonhydronephrotic and 58 hydronephrotic kidneys). The highest validation accuracy (98.5%) was achieved by the AlexNet model (GoogLeNet 97%, AlexNet_v2 96%, ResNet50 96%, ResNet101 97.5%, and ResNet152 95%). The deeplabv3_resnet50 and deeplabv3_resnet101 reached a dice coefficient of 94.74% and 94.48%, respectively, on the task of automated kidney segmentation. The study is limited by analyzing only hydronephrosis, but this specific focus enabled high detection accuracy. We show that our automated ultrasound deep learning model can be trained and used to interpret and segmentate ultrasound images from different sources with high accuracy. This method will serve as an automated tool in the diagnostic algorithm of acute renal failure in the future. Hydronephrosis is crucial in the diagnosis of renal colic. Recent advances in artificial intelligence allow automated detection of hydronephrosis in ultrasound images with high accuracy. These methods will help standardize the diagnosis and treatment renal colic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Ava应助lzx采纳,获得10
2秒前
浮熙发布了新的文献求助10
3秒前
4秒前
5秒前
英姑应助追忆采纳,获得10
5秒前
6秒前
6秒前
6秒前
7秒前
zxx5313491完成签到,获得积分10
8秒前
fuxixixi发布了新的文献求助10
9秒前
9秒前
whisper发布了新的文献求助10
9秒前
hehe完成签到,获得积分10
9秒前
勤恳绝义发布了新的文献求助10
10秒前
10秒前
李琳赛发布了新的文献求助30
11秒前
香蕉觅云应助jinzhen采纳,获得10
11秒前
zxx5313491发布了新的文献求助10
12秒前
12秒前
闪闪的YOSH完成签到,获得积分10
13秒前
15秒前
15秒前
英俊的铭应助仂尤采纳,获得10
16秒前
16秒前
fuxixixi完成签到,获得积分10
17秒前
领导范儿应助伯赏笑白采纳,获得10
17秒前
19秒前
19秒前
脑洞疼应助自然的芙蓉采纳,获得10
20秒前
yy发布了新的文献求助10
20秒前
zym完成签到,获得积分10
20秒前
Hello应助简单千秋采纳,获得10
21秒前
22秒前
量子星尘发布了新的文献求助10
22秒前
23秒前
23秒前
坦率的含海完成签到,获得积分10
24秒前
nuomi完成签到,获得积分10
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959179
求助须知:如何正确求助?哪些是违规求助? 3505472
关于积分的说明 11124101
捐赠科研通 3237190
什么是DOI,文献DOI怎么找? 1789003
邀请新用户注册赠送积分活动 871507
科研通“疑难数据库(出版商)”最低求助积分说明 802824